Heterogeneous Regime (heterogeneous + regime)

Distribution by Scientific Domains


Selected Abstracts


The effect of gas-liquid counter-current operation on gas hold-up in bubble columns using electrical resistance tomography,

JOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY, Issue 9 2010
Haibo Jin
Abstract BACKGROUND: In order to improve the performance of a counter-current bubble column, radial variations of the gas hold-ups and mean hold-ups were investigated in a 0.160 m i.d. bubble column using electrical resistance tomography with two axial locations (Plane 1 and Plane 2). In all experiments the liquid phase was tap water and the gas phase air. The superficial gas velocity was varied from 0.02 to 0.25 m s,1, and the liquid velocity varied from 0 to 0.01 m s,1. The effect of liquid velocity on the distribution of mean hold-ups and radial gas hold-ups is discussed. RESULTS: The gas hold-up profile in a gas,liquid counter-current bubble column was determined by electrical resistance tomography. The liquid velocity slightly influences the mean hold-up and radial hold-up distribution under the selected operating conditions and the liquid flow improves the transition gas velocity from a homogeneous regime to a heterogeneous regime. Meanwhile, the radial gas hold-up profiles are steeper at the central region of the column with increasing gas velocity. Moreover, the gas hold-up in the centre of the column becomes steeper with increasing liquid velocity. CONCLUSIONS: The value of mean gas hold-ups slightly increases with increasing downward liquid velocity, and more than mean gas hold-ups in batch and co-current operation. According to the experimental results, an empirical correlation for the centreline gas hold-up is obtained based on the effects of gas velocity, liquid velocity, and ratio of axial height to column diameter. The values calculated in this way are in close agreement with experimental data, and compare with literature data on gas hold-ups at the centre of the column. Copyright © 2010 Society of Chemical Industry [source]


Detecting regime transitions in slurry bubble columns using pressure time series

AICHE JOURNAL, Issue 7 2005
Keshav C. Ruthiya
Abstract Changes in the coherent standard deviation and in the average frequency of measured pressure time series with gas velocity, are proposed, as unique and unambiguous criteria to mark flow regime transitions in slurry bubble columns. In a 2-dimensional (2-D) slurry bubble column, pressure time series are measured at different gas velocities simultaneously with high-speed video recording of the gas-liquid flow. The frequency of occurrence and the average diameter of the large bubbles are determined from video image analysis. The gas velocity where the first large bubbles are detected, with an average diameter of 1.5 cm, and with a frequency of occurrence of one bubble per s, is designated as the first regime transition point (transition from the homogeneous regime to the transition regime). At this point, the coherent standard deviation of the measured pressure fluctuations clearly increases from zero. The gas velocity where the average diameter and the frequency of occurrence of the large bubbles become constant, is designated as the second regime transition point (transition from the transition regime to the heterogeneous regime). From this point onward, the slope of the coherent standard deviation of the measured pressure fluctuations clearly decreases with gas velocity, while the average frequency becomes constant. These clear changes with gas velocity in the coherent standard deviation, and in the average frequency are also demonstrated in a 3-D slurry bubble column. © 2005 American Institute of Chemical Engineers AIChE J, 2005 [source]


2D Slurry Bubble Column Hydrodynamic Phenomena Clarified with a 3D Gas,Liquid Model

THE CANADIAN JOURNAL OF CHEMICAL ENGINEERING, Issue 3-4 2003
Jeroen H. J. Kluytmans
Abstract The gas hold-up in a 2D bubble column is modelled using a 3D gas hold-up model. The influence of the scale of 2D bubble columns on several parameters, for instance, transition gas hold-up, transition gas velocity, and bubble rise velocities, is investigated and related to 3D bubble columns. By adapting the rise velocity of the large bubbles of an existing 3D bubble column model (Krishna et al., 2001a), the gas hold-up in both the homogeneous and the heterogeneous regime can be described satisfactorily. By adjusting the transition points only, it is also possible to describe the gas hold-up in systems containing small amounts of carbon particles and electrolyte. The smallest dimension of the 2D slurry bubble column, the column thickness, influences the location of the regime transition point. In the heterogeneous regime, however, it is only the largest column dimension, the column width, that influences the gas hold-up. These observations together enable proper 2D/3D bubble column comparison in future studies. Dans cette étude, la rétention de gaz dans une colonne à bulles en 2D est modélisée à l'aide d'un modèle de rétention de gaz en 3D. L'influence de l'échelle des colonnes à bulles 2D sur plusieurs paramètres, comme la rétention de gaz de transition, la vitesse de gaz de transition et les vitesses de montée des bulles, est étudiée et reliée aux colonnes à bulles 3D. On montre qu'en adaptant la vitesse de montée des bulles larges fournie par un modèle de colonnes à bulles 3D existant (Krishna et al., 2001a), la rétention de gaz tant en régime homogène qu'hétérogène peut être décrite de manière satisfaisante. En ajustant seulement les points de transition, il est également possible de décrire la rétention de gaz dans des systèmes contenant de petites quantités de particules de carbone et d'électrolyte. On a trouvé que la plus petite dimension de la colonne à bulles à suspensions 2D, soit l'épaisseur de la colonne, influence la position du point de transition de régime. Cependant, dans le régime hétérogène, c'est seulement la plus grande dimension de la colonne, soit la largeur de la colonne, qui influence la rétention de gaz. Toutes ces observations vont permettre des comparaisons adéquates des colonnes 2D et 3D dans les prochaines études. [source]


A CFD,PBM coupled model for gas,liquid flows

AICHE JOURNAL, Issue 1 2006
Tiefeng Wang
Abstract A computational fluid dynamics,population balance model (CFD-PBM) coupled model was developed that combines the advantages of CFD to calculate the entire flow field and of the PBM to calculate the local bubble size distribution. Bubble coalescence and breakup were taken into account to determine the evolution of the bubble size. Different bubble breakup and coalescence models were compared. An algorithm was proposed for computing the parameters based on the bubble size distribution, including the drag force, transverse lift force, wall lubrication force, turbulent dispersion force, and bubble-induced turbulence. With the bubble breakup and coalescence models and the interphase force formulations in this work, the CFD-PBM coupled model can give a unified description for both the homogeneous and the heterogeneous regimes. Good agreement was obtained with the experimental results for the gas holdup, liquid velocity, and bubble size distribution. © 2005 American Institute of Chemical Engineers AIChE J, 2006 [source]