Heterogeneous Model (heterogeneous + model)

Distribution by Scientific Domains


Selected Abstracts


Off-great-circle propagation of intermediate-period surface waves observed on a dense array in the French Alps

GEOPHYSICAL JOURNAL INTERNATIONAL, Issue 3 2000
N. Cotte
Array analysis is performed on surface waves recorded in the French Alps using a small-aperture (25 km) temporary array of six broad-band stations. The analysis shows that both Rayleigh and Love waves deviate relative to the great-circle path. The deviations are particularly strong, up to 30°, between 20 and 40 s period. To interpret these observations, we first study the effect of large-scale structures using ray tracing in a smooth, laterally heterogeneous model of the Earth. Second, we evaluate the local effect by considering a model for the French Alps including strong lateral heterogeneities around the array that were not taken into account in the ray tracing. By combining these two possible causes of the observed deviations, we propose an explanation for the general trend in the observed deviations. Finally, we show that by taking into account azimuthal deviations, phase velocities measured at a regional scale can be significantly improved. [source]


Modelling canopy CO2 fluxes: are ,big-leaf' simplifications justified?

GLOBAL ECOLOGY, Issue 6 2001
A. D. Friend
Abstract 1The ,big-leaf' approach to calculating the carbon balance of plant canopies is evaluated for inclusion in the ETEMA model framework. This approach assumes that canopy carbon fluxes have the same relative responses to the environment as any single leaf, and that the scaling from leaf to canopy is therefore linear. 2A series of model simulations was performed with two models of leaf photosynthesis, three distributions of canopy nitrogen, and two levels of canopy radiation detail. Leaf- and canopy-level responses to light and nitrogen, both as instantaneous rates and daily integrals, are presented. 3Observed leaf nitrogen contents of unshaded leaves are over 40% lower than the big-leaf approach requires. Scaling from these leaves to the canopy using the big-leaf approach may underestimate canopy photosynthesis by ~20%. A leaf photosynthesis model that treats within-leaf light extinction displays characteristics that contradict the big-leaf theory. Observed distributions of canopy nitrogen are closer to those required to optimize this model than the homogeneous model used in the big-leaf approach. 4It is theoretically consistent to use the big-leaf approach with the homogeneous photosynthesis model to estimate canopy carbon fluxes if canopy nitrogen and leaf area are known and if the distribution of nitrogen is assumed optimal. However, real nitrogen profiles are not optimal for this photosynthesis model, and caution is necessary in using the big-leaf approach to scale satellite estimates of leaf physiology to canopies. Accurate prediction of canopy carbon fluxes requires canopy nitrogen, leaf area, declining nitrogen with canopy depth, the heterogeneous model of leaf photosynthesis and the separation of sunlit and shaded leaves. The exact nitrogen profile is not critical, but realistic distributions can be predicted using a simple model of canopy nitrogen allocation. [source]


Quantifying the heterogeneous heat response of Escherichia coli under dynamic temperatures

JOURNAL OF APPLIED MICROBIOLOGY, Issue 4 2010
E. Van Derlinden
Abstract Aims:, Non-sigmoid growth curves of Escherichia coli obtained at constant temperatures near the maximum growth temperature (Tmax) were previously explained by the coexistence of two subpopulations, i.e. a stress-sensitive and a stress-resistant subpopulation. Mathematical simulations with a heterogeneous model support this hypothesis for static experiments at 45°C. In this article, the behaviour of E. coli, when subjected to a linearly increasing temperature crossing Tmax, is studied. Methods and Results:, Subpopulation dynamics are studied by culturing E. coli K12 MG1655 in brain heart infusion broth in a bioreactor. The slowly increasing temperature (°C h,1) starting from 42°C results in growth up to 60°C, a temperature significantly higher than the known Tmax. Given some additional presumptions, mathematical simulations with the heterogeneous model can describe the dynamic experiments rather well. Conclusions:, This study further confirms the existence of a stress-resistant subpopulation and reveals the unexpected growth of E. coli at temperatures significantly higher than Tmax. Significance and Impact of the Study:, The growth of the small stress-resistant subpopulation at unexpectedly high temperatures asks for a revision of currently applied models in food safety and food quality strategies. [source]


Simulation of a slurry-bubble column reactor for Fischer-Tropsch synthesis using single-event microkinetics

AICHE JOURNAL, Issue 8 2009
Gisela Lozano-Blanco
Abstract A single-event microkinetic model for Fischer-Tropsch synthesis including the water-gas shift reaction has been implemented in a one-dimensional, two-bubble class, heterogeneous model with axial effective diffusion to study the performance of a commercial slurry bubble column reactor. Mass balance equations are solved for every species in the reaction network in the large bubbles, small bubbles, and slurry phase, whereas the energy balance is applied to the slurry phase. The catalyst concentration profile is described by a sedimentation-dispersion model. The combination of microkinetics that generate net production rates for the individual reaction products and hydrodynamics allows describing detailed concentration profiles along the reactor axis as a function of operating conditions and design parameters. As example, the effects of catalyst loading, syngas feed flow rate, inlet temperature, or hydrogen to carbon monoxide inlet ratio on the individual hydrocarbons are investigated. To our knowledge, no reactor model in literature is able to describe detailed compositions at the level described by the reactor model developed in this work. © 2009 American Institute of Chemical Engineers AIChE J, 2009 [source]