Home About us Contact | |||
Heterogeneous Landscapes (heterogeneous + landscapes)
Selected AbstractsA Comparison of Statistical Approaches for Predicting Stream Temperatures Across Heterogeneous Landscapes,JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 4 2009Kevin E. Wehrly Abstract:, Estimating stream temperatures across broad spatial extents is important for regional conservation of running waters. Although statistical models can be useful in this endeavor, little information exists to aid in the selection of a particular statistical approach. Our objective was to compare the accuracy of ordinary least-squares multiple linear regression, generalized additive modeling, ordinary kriging, and linear mixed modeling (LMM) using July mean stream temperatures in Michigan and Wisconsin. Although LMM using low-rank thin-plate smoothing splines to measure the spatial autocorrelation in stream temperatures was the most accurate modeling approach; overall, there were only slight differences in prediction accuracy among the evaluated approaches. This suggests that managers and researchers can select a stream temperature modeling approach that meets their level of expertise without sacrificing substantial amounts of prediction accuracy. The most accurate models for Michigan and Wisconsin had root mean square errors of 2.0-2.3°C, suggesting that only relatively coarse predictions can be produced from landscape-based statistical models at regional scales. Explaining substantially more variability in stream temperatures likely will require the collection of finer-scale hydrologic and physiographic data, which may be cost prohibitive for monitoring and assessing stream temperatures at regional scales. [source] Long-distance biological transport processes through the air: can nature's complexity be unfolded in silico?DIVERSITY AND DISTRIBUTIONS, Issue 2 2005Ran Nathan ABSTRACT Understanding and predicting complex biological systems are best accomplished through the synthesis and integration of information across relevant spatial, temporal and thematic scales. We propose that mechanistic transport models, which integrate atmospheric turbulence with information on relevant biological attributes, can effectively incorporate key elements of aerial transport processes at scales ranging from a few centimetres and fractions of seconds, to hundreds of kilometres and decades. This capability of mechanistic models is critically important for modelling the flow of organisms through the atmosphere because diverse aerial transport processes , such as pathogen spread, seed dispersal, spider ballooning and bird migration , are sensitive to the details of small-scale short-term turbulent deviations from the mean airflow. At the same time, all these processes are strongly influenced by the typical larger-scale variation in landscape structure, through its effects on wind flow patterns. We therefore highlight the useful coupling of detailed atmospheric models such as large eddy simulations (LES), which can provide a high-resolution description of turbulent airflow, with regional atmospheric models, which can capture the effects of landscape heterogeneity at various scales. Further progress in computational fluid dynamics (CFD) will enable rigorous exploration of transport processes in heterogeneous landscapes. [source] Trophic level modulates carabid beetle responses to habitat and landscape structure: a pan-European studyECOLOGICAL ENTOMOLOGY, Issue 2 2010ADAM J. VANBERGEN 1. Anthropogenic pressures have produced heterogeneous landscapes expected to influence diversity differently across trophic levels and spatial scales. 2. We tested how activity density and species richness of carabid trophic groups responded to local habitat and landscape structure (forest percentage cover and habitat richness) in 48 landscape parcels (1 km2) across eight European countries. 3. Local habitat affected activity density, but not species richness, of both trophic groups. Activity densities were greater in rotational cropping compared with other habitats; phytophage densities were also greater in grassland than forest habitats. 4. Controlling for country and habitat effects, we found general trophic group responses to landscape structure. Activity densities of phytophages were positively correlated, and zoophages uncorrelated, with increasing habitat richness. This differential functional group response to landscape structure was consistent across Europe, indicated by a lack of a country × habitat richness interaction. Species richness was unaffected by landscape structure. 5. Phytophage sensitivity to landscape structure may arise from relative dependency on seed from ruderal plants. This trophic adaptation, rare in Carabidae, leads to lower phytophage numbers, increasing vulnerability to demographic and stochastic processes that the greater abundance, species richness, and broader diet of the zoophage group may insure against. [source] Computer-generated null models as an approach to detect perceptual range in mark,re-sight studies , an example with grasshoppersECOLOGICAL ENTOMOLOGY, Issue 2 2005Silke Hein Abstract., 1. Dispersal and habitat detection are key factors for the colonisation of habitat fragments in heterogeneous landscapes. The ability to recognise a habitat from a certain distance should increase the survival chances of a dispersing individual; however, due to methodological problems there is little information on the perceptual range of most species. 2. In a field experiment, 44 individually marked grasshoppers of the species Oedipoda caerulescens (Orthoptera: Acrididae: Locustinae) were released into an unfamiliar, hostile environment at various distances from a patch of preferred habitat. 3. Whether individuals reached the habitat or not was measured, as well as the daily movement distances. The number of individuals that reached the habitat was tested against computer-generated predictions based on different underlying rules for the movement behaviour of individuals but not accounting for the ability to detect habitat from distance. 4. On the first day a significantly higher proportion of grasshoppers arrived in the habitat than predicted by any of the null models. 5. It was concluded that individuals of O. caerulescens are able to detect their preferred habitat from a distance. 6. Edge permeability was very low as none of the individuals left the habitat once they had reached it. 7. Additional analyses showed that individuals changed movement behaviour from a directed walk with great daily distances in unsuitable habitat to a walk with significantly shorter daily distances within the preferred habitat. 8. The problems that arose in the field experiment are discussed and recommendations are given for further studies. [source] Linking Spatial Pattern and Ecological Responses in Human-Modified Landscapes: The Effects of Deforestation and Forest Fragmentation on BiodiversityGEOGRAPHY COMPASS (ELECTRONIC), Issue 4 2009John A. Kupfer Studies of forest loss and fragmentation provide clear examples of the linkages between ecological pattern and process. Reductions in forest area lead to higher within-patch extinction rates, the eventual loss of area-sensitive species, and declines in species richness and diversity. Forest loss also results in increased isolation of remnants, lower among-patch immigration rates, and less ,rescue' from surrounding populations. Specific responses, however, are sometimes counterintuitive because they depend on life-history tradeoffs that influence population dynamics and species co-existence in heterogeneous landscapes, not just forest remnants. Thus, while fragmentation generally favours r-selected, generalist strategies, such as high dispersal and a wide niche breadth, ecological outcomes may be confounded by species-specific responses to conditions in the human-dominated matrix and the ways in which forest edges shape cross-landscape movements. Given that pressures on global forestlands continue to intensify due to growing population sizes, economic pressures, and needs for space and resources, successfully maintaining or restoring species will necessitate a combination of short- and long-term actions that address both habitat protection and restoration. Doing so will require an interdisciplinary approach that gives adequate attention to the manners by which forest loss and fragmentation affect population dynamics through changes in forest area, isolation, habitat quality, matrix properties, and edge effects as well as the synergistic interactions of fragmentation with climate change, human-altered disturbance regimes, species interactions and other drivers of species population declines. [source] Do dams and levees impact nitrogen cycling?GLOBAL CHANGE BIOLOGY, Issue 8 2005Simulating the effects of flood alterations on floodplain denitrification Abstract A fundamental challenge in understanding the global nitrogen cycle is the quantification of denitrification on large heterogeneous landscapes. Because floodplains are important sites for denitrification and nitrogen retention, we developed a generalized floodplain biogeochemical model to determine whether dams and flood-control levees affect floodplain denitrification by altering floodplain inundation. We combined a statistical model of floodplain topography with a model of hydrology and nitrogen biogeochemistry to simulate floods of different magnitude. The model predicted substantial decreases in NO3 -N processing on floodplains whose overbank floods have been altered by levees and upstream dams. Our simulations suggest that dams may reduce nitrate processing more than setback levees. Levees increased areal floodplain denitrification rates, but this effect was offset by a reduction in the area inundated. Scenarios that involved a levee also resulted in more variability in N processing among replicate floodplains. Nitrate loss occurred rapidly and completely in our model floodplains. As a consequence, total flood volume and the initial mass of nitrate reaching a floodplain may provide reasonable estimates of total N processing on floodplains during floods. This finding suggests that quantifying the impact of dams and levees on floodplain denitrification may be possible using recent advances in remote sensing of floodplain topography and flood stage. Furthermore, when considering flooding over the long-term, the cumulative N processed by frequent smaller floods was estimated to be quite large relative to that processed by larger, less frequent floods. Our results suggest that floodplain denitrification may be greatly influenced by the pervasive anthropogenic flood-control measures that currently exist on most majors river floodplains throughout the world, and may have the potential to be impacted by future changes in flood probabilities that will likely occur as a result of climate shifts. [source] Spatial variability of snowmelt timing from AMSR-E and SSM/I passive microwave sensors, Pelly River, Yukon Territory, CanadaHYDROLOGICAL PROCESSES, Issue 12 2007Joan M. Ramage Abstract Spring snow melt run-off in high latitude and snow-dominated drainage basins is generally the most significant annual hydrological event. Melt timing, duration, and flow magnitude are highly variable and influence regional climate, geomorphology, and hydrology. Arctic and sub-arctic regions have sparse long-term ground observations and these snow-dominated hydrologic regimes are sensitive to the rapidly warming climate trends that characterize much of the northern latitudes. Passive microwave brightness temperatures are sensitive to changes in the liquid water content of the snow pack and make it possible to detect incipient melt, diurnal melt-refreeze cycles, and the approximate end of snow cover on the ground over large regions. Special Sensor Microwave Imager (SSM/I) and Advanced Microwave Scanning Radiometer for EOS (AMSR-E) passive microwave brightness temperatures (Tb) and diurnal amplitude variations (DAV) are used to investigate the spatial variability of snowmelt onset timing (in two stages, ,DAV onset' and ,melt onset') and duration for a complex sub-arctic landscape during 2005. The satellites are sensitive to small percentages of liquid water, and therefore represent ,incipient melt', a condition somewhat earlier than a traditional definition of a melting snowpack. Incipient melt dates and duration are compared to topography, land cover, and hydrology to investigate the strength and significance of melt timing in heterogeneous landscapes in the Pelly River, a major tributary to the Yukon River. Microwave-derived melt onset in this region in 2005 occurred from late February to late April. Upland areas melt 1,2 weeks later than lowland areas and have shorter transition periods. Melt timing and duration appear to be influenced by pixel elevation, aspect, and uniformity as well as other factors such as weather and snow mass distribution. The end of the transition season is uniform across sensors and across the basin in spite of a wide variety of pixel characteristics. Copyright © 2007 John Wiley & Sons, Ltd. [source] Contrasting responses of arable spiders to the landscape matrix at different spatial scalesJOURNAL OF BIOGEOGRAPHY, Issue 1 2008Martin H. Schmidt Abstract Aim, Animal communities can be influenced by the composition of the surrounding landscape through immigration. Depending on habitat preferences, however, the effect of the landscape matrix can be positive or negative and can vary with scale. We tested this idea with arable spiders and tried to infer dispersal distances from relationships between local density and landscape composition at different spatial scales. Location, Thirty-eight landscapes around the cities of Göttingen and Giessen, Germany. Methods, Spiders were captured with pitfall traps in one field of winter wheat in each landscape. Landscape composition around the fields was characterized at 11 scales from 95 m to 3 km radius by land-use mapping and subsequent GIS analysis. Correlation tests were performed between landscape composition and local densities or species richness. Results, In both study regions, local species richness was enhanced by non-crop habitats on a landscape scale. The overall densities of wolf spiders (Lycosidae), long-jawed spiders (Tetragnathidae), crab spiders (Thomisidae), and dwarf sheet spiders (Hahniidae) increased significantly in landscapes with high percentages of non-crop habitats. Out of the 40 species tested, 19 responded positively to the percentage of non-crop habitats in the surrounding landscape, and five responded negatively. Depending on the species, the spatial scales with the highest explanatory power ranged from 95 m to 3 km radius around the study fields, potentially reflecting dispersal distances. Main conclusions, Arable spider species showed contrasting responses to the landscape context with respect both to the direction and to the spatial scale of the relationship. The variation in landscape requirements among species ensures high spider densities in a wide range of situations, which contributes to ecosystem resilience. However, species richness of arable spiders depends on heterogeneous landscapes with high percentages of non-crop habitats. [source] Spatial patterns of recruitment in Mediterranean plant species: linking the fate of seeds, seedlings and saplings in heterogeneous landscapes at different scalesJOURNAL OF ECOLOGY, Issue 6 2008Lorena Gómez-Aparicio Summary 1Plant recruitment is a multiphase process that takes place in environments that are heterogeneous in space and time. In this work, I analyse how environmental heterogeneity in Mediterranean forests affects dynamics of early recruitment at different scales, using the wind-dispersed tree Acer opalus subsp. granatense as a case study. 2Seed dispersal and viability, post-dispersal predation, seedling emergence and seedling and sapling survival were evaluated in different habitats (regional scale) and microhabitats (local scale). Simultaneously, a review of the literature on spatial dynamics of plant recruitment in Mediterranean systems was conducted to look for general patterns and investigate their fit to the Acer system. Nineteen woody and herbaceous species were included in the review. 3At the regional scale, Acer recruitment dynamics strongly converged among sites of the same habitat. This was mainly due to large seedling emergence and survival differences among habitats. Although most of the studies reviewed analyzed only one site per habitat type, they also support strong regional variation (either site- or habitat-specific) in recruitment patterns. 4At the local scale, Acer recruitment was microhabitat-specific, a result shared by almost all the reviewed species independently of their life form and dispersal syndrome. This was mostly due to spatial differences in seed arrival (higher under conspecifics) and seedling survival (higher under nurse shrubs). 5Spatial discordance among seed rain and recruitment was found in 60% of the reviewed species at the regional scale, and in 67% at the local scale. Acer results supported this predominant lack of concordance. Discordance among seed rain and recruitment suggests that regeneration is largely limited by safe sites than by seed availability. Because seedling survival was the limiting process with a larger impact on the magnitude and spatial pattern of recruitment, safe sites might be defined as those where seedlings have a higher survival probability. 6Synthesis: This study indicates that the influence of seed dispersal on the spatial patterns and demography of plant species could be limited in heterogeneous and stressful environments (as are found in the Mediterranean), where recruitment is restricted to a small fraction of the landscape. If we are to preserve the distribution and abundance of Mediterranean species in the face of environmental changes, we need to explicitly consider the strong patch-specificity that characterizes their recruitment process at all scales. [source] Migration load in plants: role of pollen and seed dispersal in heterogeneous landscapesJOURNAL OF EVOLUTIONARY BIOLOGY, Issue 1 2008S. LOPEZ Abstract Evolution of local adaptation depends critically on the level of gene flow, which, in plants, can be due to either pollen or seed dispersal. Using analytical predictions and individual-centred simulations, we investigate the specific influence of seed and pollen dispersal on local adaptation in plant populations growing in patchy heterogeneous landscapes. We study the evolution of a polygenic trait subject to stabilizing selection within populations, but divergent selection between populations. Deviations from linkage equilibrium and Hardy,Weinberg equilibrium make different contributions to genotypic variance depending on the dispersal mode. Local genotypic variance, differentiation between populations and genetic load vary with the rate of gene flow but are similar for seed and pollen dispersal, unless the landscape is very heterogeneous. In this case, genetic load is higher in the case of pollen dispersal, which appears to be due to differences in the distribution of genotypic values before selection. [source] Evolutionary consequences of autopolyploidyNEW PHYTOLOGIST, Issue 1 2010Christian Parisod Summary Autopolyploidy is more common in plants than traditionally assumed, but has received little attention compared with allopolyploidy. Hence, the advantages and disadvantages of genome doubling per se compared with genome doubling coupled with hybridizations in allopolyploids remain unclear. Autopolyploids are characterized by genomic redundancy and polysomic inheritance, increasing effective population size. To shed light on the evolutionary consequences of autopolyploidy, we review a broad range of studies focusing on both synthetic and natural autopolyploids encompassing levels of biological organization from genes to evolutionary lineages. The limited evidence currently available suggests that autopolyploids neither experience strong genome restructuring nor wide reorganization of gene expression during the first generations following genome doubling, but that these processes may become more important in the longer term. Biogeographic and ecological surveys point to an association between the formation of autopolyploid lineages and environmental change. We thus hypothesize that polysomic inheritance may provide a short-term evolutionary advantage for autopolyploids compared to diploid relatives when environmental change enforces range shifts. In addition, autopolyploids should possess increased genome flexibility, allowing them to adapt and persist across heterogeneous landscapes in the long run. [source] Does attraction to conspecifics explain the patch-size effect?OIKOS, Issue 8 2009An experimental test Recent theory suggests that attraction to conspecifics during habitat selection can be one potential, yet untested, mechanism for animal sensitivity to habitat fragmentation. The least flycatcher Empidonax minimus, a highly territorial migratory bird, has previously been shown to be attracted to conspecifics and sensitive to patch size by avoiding small patches of riparian forest in Montana, USA. I used a large-scale field experiment in this region to test the conspecific attraction hypothesis for explaining sensitivity to patch size, and I supplemented this experiment by estimating whether vegetation structure, nest predation, or nest parasitism rates could better explain patterns of sensitivity to patch size. Vegetation structure did not vary consistently with patch size, based on a random sample of patches across 150,km of the Madison and Missouri Rivers, Montana. Nest predation and parasitism rates by brown-headed cowbirds Molothrus ater also did not vary with patch size during the experiment. However, when conspecific cues were simulated across a gradient of patch sizes, flycatchers settled in all patches , and their sensitivity to patch size vanished , providing strong support for the conspecific attraction hypothesis. These results provide the first experimental evidence that attraction to conspecifics can indeed help explain area sensitivity in nature and highlight how understanding the role of animal behavior in heterogeneous landscapes can aid in interpreting pressing conservation issues. [source] Genetic data in population viability analysis: case studies with ambystomatid salamandersANIMAL CONSERVATION, Issue 2 2010K. R. Greenwald Abstract Parameterization of population viability models is a complicated task for most types of animals, as knowledge of population demography, abundance and connectivity can be incomplete or unattainable. Here I illustrate several ways in which genetic data can be used to inform population viability analysis, via the parameterization of both initial abundance and dispersal matrices. As case studies, I use three ambysomatid salamander datasets to address the following question: how do population viability predictions change when dispersal estimates are based on genetic assignment test data versus a general dispersal,distance function? Model results showed that no local population was large enough to ensure long-term persistence in the absence of immigration, suggesting a metapopulation structure. Models parameterized with a dispersal,distance function resulted in much more optimistic predictions than those incorporating genetic data in the dispersal estimates. Under the dispersal,distance function scenario all local populations persisted; however, using genetic assignments to infer dispersal revealed local populations at risk of extinction. Viability estimates based on dispersal,distance functions should be interpreted with caution, especially in heterogeneous landscapes. In these situations I promote the idea of model parameterization using genetic assignment tests for a more accurate portrayal of real-world dispersal patterns. [source] |