Home About us Contact | |||
Heterogeneous Expression Pattern (heterogeneous + expression_pattern)
Selected AbstractsHeterogeneous expression pattern of pro- and anti-apoptotic factors in myeloid progenitor cells of patients with severe congenital neutropenia treated with granulocyte colony-stimulating factorBRITISH JOURNAL OF HAEMATOLOGY, Issue 2 2005Gunnar Cario Summary Apoptosis is accelerated in the myeloid progenitor cells of patients with severe congenital neutropenia (CN). Granulocyte colony-stimulating factor (G-CSF) increases neutrophil numbers in most CN patients. The effect of G-CSF on apoptosis in CN was analysed by apoptosis rate and expression of anti- and pro-apoptotic factors. G-CSF-treated patients showed higher apoptosis frequency, lower expression of bcl-2 and bcl-xL, but higher expression of bfl-1/A1 and mcl-1. Caspase 9 was highly expressed in patients and controls after G-CSF administration. Thus, G-CSF acts on apoptosis regulation, but additional mechanisms leading to the increase of neutrophil numbers must be assumed. [source] Cadherin expression pattern in melanocytic tumors more likely depends on the melanocyte environment than on tumor cell progressionJOURNAL OF CUTANEOUS PATHOLOGY, Issue 1 2004Sven Krengel Background:, Adhesion molecules have been assigned an important role in melanocytic tumor progression. By the loss of E-cadherin, melanocytes might escape the control of neighbouring keratinocytes. Although in vitro data support this hypothesis, there are yet no conclusive immunohistochemical results on cadherin expression in melanocytic tumors. Objective:, To gain detailed insight in the expression of cadherins and their cytoplasmic binding partners, the catenins, in various types of benign and malignant melanocytic neoplasms. Methods:, Immunohistochemical analysis of the expression of E-, P-, and N-cadherin and ,-, ,-, and ,-catenin in compound and dermal nevi, Spitz nevi, blue nevi, ultraviolet B (UVB)-irradiated nevi, and malignant melanomas of various tumor thickness. Results:, In both nevi and melanomas, E-cadherin expression in melanocytic cells decreased, following a gradient from junctional to deeper dermal localization. The pattern of E-cadherin expression was more heterogeneous in melanomas than in nevi. In some melanomas, E-cadherin was only weakly positive in the epidermal tumor cells. P-cadherin expression was similar to that of E-cadherin. N-cadherin expression in melanocytic lesions was a rare finding, however, a small percentage of melanomas showed expression in some cell nests. Some Spitz nevi exhibited strong N-cadherin immunoreactivity. Most melanocytic cells were ,- and ,-catenin-positive and ,-catenin-negative. UVB irradiation did not influence the expression of cadherins and catenins in melanocytic nevi in vivo. Conclusions:, It is presumed that the gradual loss of E-cadherin expression represents a reaction of melanocytic cells to altered conditions in the dermal environment, e.g. lack of contact to keratinocytes, or new contact with dermal extracellular matrix molecules, respectively. Melanoma cells apparently are less dependent on these environmental factors and, therefore, show a more heterogeneous expression pattern. This might be of importance for the adaptation of the tumor cells to local requirements. However, in view of our results, a causative role of (loss of ) E-cadherin or (gain of ) N-cadherin for melanocytic tumor progression still remains to be proven. [source] Identification of markers for the selection of patients undergoing renal cell carcinoma-specific immunotherapyPROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 6 2003Barbara Seliger Abstract Renal cell carcinoma (RCC) represents the most common malignant tumor in the kidney and is resistant to conventional therapies. The diagnosis of RCC is often delayed leading to progression and metastatic spread of the disease. Thus, validated markers for the early detection of the disease as well as selection of patients undergoing specific therapy is urgently needed. Using treatment with the monoclonal antibody (mAb) G250 as a model, proteome-based strategies were implemented for the identification of markers which may allow the discrimination between responders and nonresponders prior to application of G250-mediated immunotherapy. Flow cytometry revealed G250 surface expression in approximately 40% of RCC cell lines, but not in the normal kidney epithelium cell lines. G250 expression levels significantly varied thereby distinguishing between low, medium and high G250 expressing cell lines. Comparisons of two-dimensional gel electrophoresis expression profiles of untreated RCC cell lines versus RCC cell lines treated with a mAb directed against G250 and the characterization of differentially expressed proteins by mass spectrometry and/or Edman sequencing led to the identification of proteins such as chaperones, antigen processing components, transporters, metabolic enzymes, cytoskeletal proteins and unknown proteins. Moreover, some of these differentially expressed proteins matched with immunoreactive proteins previously identified by proteome analysis combined with immunoblotting using sera from healthy donors and RCC patients, a technique called PROTEOMEX. Immunohistochemical analysis of a panel of surgically removed RCC lesions and corresponding normal kidney epithelium confirmed the heterogeneous expression pattern found by proteome-based technologies. In conclusion, conventional proteome analysis as well as PROTEOMEX could be successfully employed for the identification of markers which may allow the selection of patients prior to specific immunotherapy. [source] Expression of regulatory genes for lymphoplasmacytic cell differentiation in Waldenstrom MacroglobulinemiaBRITISH JOURNAL OF HAEMATOLOGY, Issue 1 2009Xavier Leleu Summary Waldenstrom Macroglobulinemia (WM) is a B-cell malignancy characterized by excess bone marrow (BM) lymphoplasmacytic cells (LPC). The accumulation of LPC in WM may represent a failure of B-cells to properly differentiate into plasma cells. The present study investigated transcriptional expression of genes involved in late B-cell differentiation, including PRDM1, PAX5, XBP1 transcripts and ERN1, in BM B-cells from 31 patients with WM and six healthy donors. Real time reverse transcription polymerase chain reaction (RT-PCR) determined that approximately 80% of the patients had high XBP1 spliced mRNA expression, 80% of whom had high mRNA ERN1, expression. XBP1, PRDM1 and PAX5 mRNA was present in all patients studied. Using relative quantitative RT-PCR we isolated two groups with low and high expression of XBP1, XBP1 spliced and ERN1,. Sequence analysis showed germline polymorphisms in all genes studied. These data depict for the first time a heterogeneous expression pattern of the genes involved in late differentiation process of plasma cells in patients with WM and propose a role of XBP1-ERN1, in WM pathogenesis. [source] |