Home About us Contact | |||
Heschl's Gyrus (heschl + gyrus)
Selected AbstractsAltered volume and hemispheric asymmetry of the superficial cortical layers in the schizophrenia planum temporaleEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 3 2009John F. Smiley Abstract In vivo structural MRI studies in schizophrenia auditory cerebral cortex have reported smaller volumes and, less consistently, have reported altered hemispheric asymmetry of volumes. We used autopsy brains from 19 schizophrenia and 18 nonpsychiatric male subjects to measure the volume asymmetry of the planum temporal (PT). We then used the most recently autopsied 11 schizophrenia and 10 nonpsychiatric brains to measure the widths and fractional volumes of the upper (I,III) and lower (IV,VI) layers. Measurements of whole PT gray matter volumes did not show significant changes in schizophrenia. Nevertheless, laminar volume measurements revealed that the upper layers of the PT comprise a smaller fraction of the total cortex in schizophrenia than in nonpsychiatric brains. Subdivision of the PT showed that this change was especially prominent caudally, beyond Heschl's gyrus, whereas similar but less pronounced changes were found in the rostral PT and Heschl's gyrus. Complementary measures of laminar widths showed that the altered fractional volume in the caudal left PT was due mainly to ,8% thinner upper layers. However, the caudal right PT had a different profile, with thicker lower layers and comparatively unchanged upper layers. Thus, in the present study, laminar measurements provided a more sensitive method for detecting changes than measurement of whole PT volumes. Besides findings in schizophrenia, our cortical width measurements revealed normal hemispheric asymmetries consistent with previous reports. In schizophrenia, the thinner upper layers of the caudal PT suggest disrupted corticocortical processing, possibly affecting the multisensory integration and phonetic processing of this region. [source] Assessing the influence of scanner background noise on auditory processing.HUMAN BRAIN MAPPING, Issue 8 2007Abstract We compared two experimental designs aimed at minimizing the influence of scanner background noise (SBN) on functional MRI (fMRI) of auditory processes with one conventional fMRI design. Ten subjects listened to a series of four one-syllable words and had to decide whether two of the words were identical. This was contrasted with a no-stimulus control condition. All three experimental designs had a duration of ,17 min: 1) a behavior interleaved gradients (BIG; Eden et al. [1999] J Magn Reson Imaging 41:13,20) design (repetition time, TR, = 6 s), where stimuli were presented during the SBN-free periods between clustered volume acquisitions (CVA); 2) a sparse temporal sampling technique (STsamp; e.g., Gaab et al., [2003] Neuroimage 19:1417,1426) acquiring only one set of slices following each of the stimulations with a 16-s TR and jittered delay times between stimulus offset and image acquisition; and 3) an event-related design with continuous scanning (ERcont) using the stimulation design of STsamp but with a 2-s TR. The results demonstrated increased signal within Heschl's gyrus for the STsamp and BIG-CVA design in comparison to ERcont as well as differences in the overall functional anatomy among the designs. The possibility to obtain a time course of activation as well as the full recovery of the stimulus- and SBN-induced hemodynamic response function signal and lack of signal suppression from SBN during the STsamp design makes this technique a powerful approach for conducting auditory experiments using fMRI. Practical strengths and limitations of the three auditory acquisition paradigms are discussed. Hum Brain Mapp, 2006. © 2006 Wiley-Liss, Inc. [source] Assessing the influence of scanner background noise on auditory processing.HUMAN BRAIN MAPPING, Issue 8 2007Abstract Several studies reported decreased signal intensities within auditory areas for experimental designs employing continuous scanner background noise (SBN) in comparison to designs with less or no SBN. This study examined the source for this SBN-induced masking effect of the blood oxygenation level-dependent (BOLD) response by directly comparing two experimental sessions with the same auditory stimulation, which was presented either with or without recorded scanner background noise (RecSBN). Ten subjects listened to a series of four one-syllable words and had to decide whether two of the words were identical. The words were either presented with a silent background or with added RecSBN. This was then contrasted with either silence or RecSBN. A sparse temporal sampling method was used in both sessions, which enabled us to directly assess the influence of RecSBN without varying scanning parameters, acquisition quantities, or auditory stimulations. Our results suggest that previously reported SBN-induced masking of the BOLD response in experimental designs with SBN might be caused by an interaction between increased baseline levels and nonlinearity effects within auditory cortices. Adding SBN to an experimental condition does not enhance signal intensities to the same degree that SBN does when presented with a silent background, and therefore contrasting an experimental and baseline condition that both have SBN may lead to signal decreases. In addition, our study shows this effect is greatest in Heschl's gyrus, but can also be observed in higher-order auditory areas. Hum Brain Mapp, 2006. © 2006 Wiley-Liss, Inc. [source] Genetic influences on human brain structure: A review of brain imaging studies in twins,HUMAN BRAIN MAPPING, Issue 6 2007Jiska S. Peper Abstract Twin studies suggest that variation in human brain volume is genetically influenced. The genes involved in human brain volume variation are still largely unknown, but several candidate genes have been suggested. An overview of structural Magnetic Resonance (brain) Imaging studies in twins is presented, which focuses on the influence of genetic factors on variation in healthy human brain volume. Twin studies have shown that genetic effects varied regionally within the brain, with high heritabilities of frontal lobe volumes (90,95%), moderate estimates in the hippocampus (40,69%), and environmental factors influencing several medial brain areas. High heritability estimates of brain structures were revealed for regional amounts of gray matter (density) in medial frontal cortex, Heschl's gyrus, and postcentral gyrus. In addition, moderate to high heritabilities for densities of Broca's area, anterior cingulate, hippocampus, amygdala, gray matter of the parahippocampal gyrus, and white matter of the superior occipitofrontal fasciculus were reported. The high heritability for (global) brain volumes, including the intracranium, total brain, cerebral gray, and white matter, seems to be present throughout life. Estimates of genetic and environmental influences on age-related changes in brain structure in children and adults await further longitudinal twin-studies. For prefrontal cortex volume, white matter, and hippocampus volumes, a number of candidate genes have been identified, whereas for other brain areas, only a few or even a single candidate gene has been found so far. New techniques such as genome-wide scans may become helpful in the search for genes that are involved in the regulation of human brain volume throughout life. Hum Brain Mapp, 2007. © 2007 Wiley-Liss, Inc. [source] Functional segregation of cortical language areas by sentence repetitionHUMAN BRAIN MAPPING, Issue 5 2006Ghislaine Dehaene-Lambertz Abstract The functional organization of the perisylvian language network was examined using a functional MRI (fMRI) adaptation paradigm with spoken sentences. In Experiment 1, a given sentence was presented every 14.4 s and repeated two, three, or four times in a row. The study of the temporal properties of the BOLD response revealed a temporal gradient along the dorsal,ventral and rostral,caudal directions: From Heschl's gyrus, where the fastest responses were recorded, responses became increasingly slower toward the posterior part of the superior temporal gyrus and toward the temporal poles and the left inferior frontal gyrus, where the slowest responses were observed. Repetition induced a decrease in amplitude and a speeding up of the BOLD response in the superior temporal sulcus (STS), while the most superior temporal regions were not affected. In Experiment 2, small blocks of six sentences were presented in which either the speaker voice or the linguistic content of the sentence, or both, were repeated. Data analyses revealed a clear asymmetry: While two clusters in the left superior temporal sulcus showed identical repetition suppression whether the sentences were produced by the same speaker or different speakers, the homologous right regions were sensitive to sentence repetition only when the speaker voice remained constant. Thus, hemispheric left regions encode linguistic content while homologous right regions encode more details about extralinguistic features like speaker voice. The results demonstrate the feasibility of using sentence-level adaptation to probe the functional organization of cortical language areas. Hum Brain Mapp, 2006. © 2006 Wiley-Liss, Inc. [source] |