Home About us Contact | |||
Heritable Variation (heritable + variation)
Selected AbstractsHeritable variation and genetic correlation of quantitative traits within and between ecotypes of Avena barbataJOURNAL OF EVOLUTIONARY BIOLOGY, Issue 3 2008K. M. GARDNER Abstract We examined heritable variation for quantitative traits within and between naturally occurring mesic and xeric ecotypes of the slender wild oat (Avena barbata), and in 188 recombinant inbred lines derived from a cross between the ecotypes. We measured a suite of seedling and adult traits in the greenhouse, as well as performance-related traits in field sites native to the two ecotypes. Although the ecotypes were genetically diverged for most traits, few traits showed significant heritable variation within either ecotype. In contrast, considerable heritable variation was released in the recombinant progeny of the cross, and transgressive segregation was apparent in all traits. Heritabilities were substantially greater in the greenhouse than in the field, and this was associated with an increase in environmental variance in the field, rather than a decrease in genetic variance. Strong genetic correlations were evident among the recombinants, such that 22 measured traits could be well represented by only seven underlying factors, which accounted for 80% of the total variation. The primary axis of variation in the greenhouse described a trade-off between vegetative and reproductive allocation, mediated by the date of first flowering, and fitness was strongly correlated with this trade-off. Other factors in the greenhouse described variation in size and in seedling traits. Lack of correlation among these factors represents the release of multivariate trait variation through recombination. In the field, a separate axis of variation in overall performance was found for each year/site combination. Performance was significantly correlated across field environments, but not significantly correlated between greenhouse and field. [source] Evolutionary biology of starvation resistance: what we have learned from DrosophilaJOURNAL OF EVOLUTIONARY BIOLOGY, Issue 5 2007S. RION Abstract Most animals face periods of food shortage and are thus expected to evolve adaptations enhancing starvation resistance (SR). Most of our knowledge of the genetic and physiological bases of those adaptations, their evolutionary correlates and trade-offs, and patterns of within- and among-population variation, comes from studies on Drosophila. In this review, we attempt to synthesize the various facets of evolutionary biology of SR emerging from those studies. Heritable variation for SR is ubiquitous in Drosophila populations, allowing for large responses to experimental selection. Individual flies can also inducibly increase their SR in response to mild nutritional stress (dietary restriction). Both the evolutionary change and the physiological plasticity involve increased accumulation of lipids, changes in carbohydrate and lipid metabolism and reduction in reproduction. They are also typically associated with greater resistance to desiccation and oxidative stress, and with prolonged development and lifespan. These responses are increasingly seen as facets of a shift of the physiology towards a ,survival mode', which helps the animal to survive hard times. The last decade has seen a great progress in revealing the molecular bases of induced responses to starvation, and the first genes contributing to genetic variation in SR have been identified. In contrast, little progress has been made in understanding the ecological significance of SR in Drosophila; in particular it remains unclear to what extent geographical variation in SR reflect differences in natural selection acting on this trait rather than correlated responses to selection on other traits. Drosophila offers a unique opportunity for an integrated study of the manifold aspects of adaptation to nutritional stress. Given that at least some major molecular mechanisms of response to nutritional stress seem common to animals, the insights from Drosophila are likely to apply more generally than just to dipterans or insects. [source] Variation within and among species in gene expression: raw material for evolutionMOLECULAR ECOLOGY, Issue 5 2006ANDREW WHITEHEAD Abstract Heritable variation in regulatory or coding regions is the raw material for evolutionary processes. The advent of microarrays has recently promoted examination of the extent of variation in gene expression within and among taxa and examination of the evolutionary processes affecting variation. This review examines these issues. We find: (i) microarray-based measures of gene expression are precise given appropriate experimental design; (ii) there is large inter-individual variation, which is composed of a minor nongenetic component and a large heritable component; (iii) variation among populations and species appears to be affected primarily by neutral drift and stabilizing selection, and to a lesser degree by directional selection; and (iv) neutral evolutionary divergence in gene expression becomes nonlinear with greater divergence times due to functional constraint. Evolutionary analyses of gene expression reviewed here provide unique insights into partitioning of regulatory variation in nature. However, common limitations of these studies include the tendency to assume a linear relationship between expression divergence and species divergence, and failure to test explicit hypotheses that involve the ecological context of evolutionary divergence. [source] The Chorus Song of Cooperatively Breeding Laughing Kookaburras (Coraciiformes, Halcyonidae: Dacelo novaeguineae): Characterization and Comparison Among GroupsETHOLOGY, Issue 1 2004Myron C. Baker I studied vocalizations of laughing kookaburras in Western Australia by sampling the laugh-song choruses of eight different groups and the isolated vocalizations of four individuals of this cooperatively breeding species. These data provided a description of the acoustic structure of vocal elements of the laugh song and a between-group comparison of laugh choruses. I identified six different categories of syllables: some syllable types appear graded with modal forms predominating. Group choruses were produced by several birds vocalizing simultaneously, usually following initiation by a single bird producing one of two typical introductory sets of syllable repetitions. Statistical analyses of samples of mid-chorus vocalizations of kookaburra groups revealed that the samples from each of the eight groups clustered in principal coordinate space and the group clusters segregated from each other to a significant degree. Linear discriminant analysis assigned 24 of the 25 samples to their correct groups. These results suggest that there is group-specific vocal signature information in the laugh chorus. The within-group similarity and between-group differences may result from heritable variation or from imitation learning. Observations of the contexts of the laugh chorus vocalization supported the interpretations of others that the chorus song is involved in group advertisement of territory occupancy and in defense of the communal borders. [source] HERITABILITY OF AND EARLY ENVIRONMENT EFFECTS ON VARIATION IN MATING PREFERENCESEVOLUTION, Issue 4 2010Holger Schielzeth Many species show substantial between-individual variation in mating preferences, but studying the causes of such variation remains a challenge. For example, the relative importance of heritable variation versus shared early environment effects (like sexual imprinting) on mating preferences has never been quantified in a population of animals. Here, we estimate the heritability of and early rearing effects on mate choice decisions in zebra finches based on the similarity of choices between pairs of genetic sisters raised apart and pairs of unrelated foster sisters. We found a low and nonsignificant heritability of preferences and no significant shared early rearing effects. A literature review shows that a low heritability of preferences is rather typical, whereas empirical tests for the relevance of sexual imprinting within populations are currently limited to very few studies. Although effects on preference functions (i.e., which male to prefer) were weak, we found strong individual consistency in choice behavior and part of this variation was heritable. It seems likely that variation in choice behavior (choosiness, responsiveness, sampling behavior) would produce patterns of nonrandom mating and this might be the more important source of between-individual differences in mating patterns. [source] THE EVOLVABILITY OF GROWTH FORM IN A CLONAL SEAWEEDEVOLUTION, Issue 12 2009Keyne Monro Although modular construction is considered the key to adaptive growth or growth-form plasticity in sessile taxa (e.g., plants, seaweeds and colonial invertebrates), the serial expression of genes in morphogenesis may compromise its evolutionary potential if growth forms emerge as integrated wholes from module iteration. To explore the evolvability of growth form in the red seaweed, Asparagopsis armata, we estimated genetic variances, covariances, and cross-environment correlations for principal components of growth-form variation in contrasting light environments. We compared variance,covariance matrices across environments to test environmental effects on heritable variation and examined the potential for evolutionary change in the direction of plastic responses to light. Our results suggest that growth form in Asparagopsis may constitute only a single genetic entity whose plasticity affords only limited evolutionary potential. We argue that morphological integration arising from modular construction may constrain the evolvability of growth form in Asparagopsis, emphasizing the critical distinction between genetic and morphological modularity in this and other modular taxa. [source] WATER STRESS ALTERS THE GENETIC ARCHITECTURE OF FUNCTIONAL TRAITS ASSOCIATED WITH DROUGHT ADAPTATION IN AVENA BARBATAEVOLUTION, Issue 3 2009Mark E. Sherrard Environmental stress can alter genetic variation and covariation underlying functional traits, and thus affect adaptive evolution in response to natural selection. However, the genetic basis of functional traits is rarely examined in contrasting resource environments, and consequently, there is no consensus regarding whether environmental stress constrains or facilitates adaptive evolution. We tested whether resource availability affects genetic variation for and covariation among seven physiological traits and seven morphological/performance traits by growing the annual grass Avena barbata in dry and well-watered treatments. We found that differences in the overall genetic variance,covariance (G) matrix between environments were driven by physiological traits rather than morphology and performance traits. More physiological traits were heritable in the dry treatment than the well-watered treatment and many of the genetic correlations among physiological traits were environment dependent. In contrast, genetic variation and covariation among the morphological and performance traits did not differ across treatments. Furthermore, genetic correlations between physiology and performance were stronger in the dry treatment, which contributed to differences in the overall G -matrix. Our results therefore suggest that physiological adaptation would be constrained by low heritable variation in resource-rich environments, but facilitated by higher heritable variation and stronger genetic correlations with performance traits in resource-poor environments. [source] Selection of low investment in sex in a cyclically parthenogenetic rotiferJOURNAL OF EVOLUTIONARY BIOLOGY, Issue 10 2009M. J. CARMONA Abstract Cyclical parthenogens, which combine asexual and sexual reproduction, are good models for research into the ecological and population processes affecting the evolutionary maintenance of sex. Sex in cyclically parthenogenetic rotifers is necessary for diapausing egg production, which is essential to survive adverse conditions between planktonic growing seasons. However, within a planktonic season sexual reproduction prevents clonal proliferation. Hence, clones with a low propensity for sex should be selected, becoming dominant in the population as the growing season progresses. In this context, we studied the dynamics of the heritable variation in propensity for sexual reproduction among clones of a Brachionus plicatilis rotifer population in a temporary Mediterranean pond during the period the species occurred in plankton. Clonal isolates displayed high heritable variation in their propensity for sex. Moreover, the frequency of clones with low propensity for sex increased during the growing season, which supports the hypothesized short-term selection for low investment in sex within a growing season. These results demonstrate (1) the inherent instability of the cyclical parthenogenetic life cycle, (2) the cost of sexual reproduction in cyclical parthenogens where sex produces diapausing eggs and (3) the role of the association between sexual reproduction and diapause in maintaining sex in these cyclical parthenogens. [source] Heritable variation and genetic correlation of quantitative traits within and between ecotypes of Avena barbataJOURNAL OF EVOLUTIONARY BIOLOGY, Issue 3 2008K. M. GARDNER Abstract We examined heritable variation for quantitative traits within and between naturally occurring mesic and xeric ecotypes of the slender wild oat (Avena barbata), and in 188 recombinant inbred lines derived from a cross between the ecotypes. We measured a suite of seedling and adult traits in the greenhouse, as well as performance-related traits in field sites native to the two ecotypes. Although the ecotypes were genetically diverged for most traits, few traits showed significant heritable variation within either ecotype. In contrast, considerable heritable variation was released in the recombinant progeny of the cross, and transgressive segregation was apparent in all traits. Heritabilities were substantially greater in the greenhouse than in the field, and this was associated with an increase in environmental variance in the field, rather than a decrease in genetic variance. Strong genetic correlations were evident among the recombinants, such that 22 measured traits could be well represented by only seven underlying factors, which accounted for 80% of the total variation. The primary axis of variation in the greenhouse described a trade-off between vegetative and reproductive allocation, mediated by the date of first flowering, and fitness was strongly correlated with this trade-off. Other factors in the greenhouse described variation in size and in seedling traits. Lack of correlation among these factors represents the release of multivariate trait variation through recombination. In the field, a separate axis of variation in overall performance was found for each year/site combination. Performance was significantly correlated across field environments, but not significantly correlated between greenhouse and field. [source] Sexual dimorphism and the genetic potential for evolution of sex allocation in the gynodioecious plant, Schiedea salicariaJOURNAL OF EVOLUTIONARY BIOLOGY, Issue 1 2008A. K. SAKAI Abstract Sex allocation theory addresses how separate sexes can evolve from hermaphroditism but little is known about the genetic potential for shifts in sex allocation in flowering plants. We tested assumptions of this theory using the common currency of biomass and measurements of narrow-sense heritabilities and genetic correlations in Schiedea salicaria, a gynodioecious species under selection for greater differentiation of the sexes. Female (carpel) biomass showed heritable variation in both sexes. Male (stamen) biomass in hermaphrodites also had significant heritability, suggesting the potential for further evolution of dioecy. Significant positive genetic correlations between females and hermaphrodites in carpel mass may slow differentiation between the sexes. Within hermaphrodites, there were no negative genetic correlations between male and female biomass as assumed by models for the evolution of dioecy, suggesting that S. salicaria is capable of further changes in biomass allocation to male and female functions and evolution toward dioecy. [source] Heritable body size mediates apparent life-history trade-offs in a simultaneous hermaphroditeJOURNAL OF EVOLUTIONARY BIOLOGY, Issue 4 2007B. L. W. MILLER Abstract Physiological trade-offs between life-history traits can constrain natural selection and maintain genetic variation in the face of selection, thereby shaping evolutionary trajectories. This study examines physiological trade-offs in simultaneously hermaphroditic banana slugs, Ariolimax dolichophallus. These slugs have high heritable variation in body size, which strongly predicts the number of clutches laid, hatching success and progeny growth rate. These fitness components were associated, but only when examined in correlation with body size. Body size mediated these apparent trade-offs in a continuum where small animals produced rapidly growing progeny, intermediate-sized animals laid many clutches and large animals had high hatching success. This study uses a novel statistical method in which the components of fitness are analysed in a mancova and related to a common covariate, body size, which has high heritability. The mancova reveals physiological trade-offs among the components of fitness that were previously masked by high variation in body size. [source] Costs of resistance: genetic correlations and potential trade-offs in an insect immune SystemJOURNAL OF EVOLUTIONARY BIOLOGY, Issue 2 2004S. C. Cotter Abstract Theory predicts that natural selection will erode additive genetic variation in fitness-related traits. However, numerous studies have found considerable heritable variation in traits related to immune function, which should be closely linked to fitness. This could be due to trade-offs maintaining variation in these traits. We used the Egyptian cotton leafworm, Spodoptera littoralis, as a model system to examine the quantitative genetics of insect immune function. We estimated the heritabilities of several different measures of innate immunity and the genetic correlations between these immune traits and a number of life history traits. Our results provide the first evidence for a potential genetic trade-off within the insect immune system, with antibacterial activity (lysozyme-like) exhibiting a significant negative genetic correlation with haemocyte density, which itself is positively genetically correlated with both haemolymph phenoloxidase activity and cuticular melanization. We speculate on a potential trade-off between defence against parasites and predators, mediated by larval colour, and its role in maintaining genetic variation in traits under natural selection. [source] Genetic and environmental effects on morphology and fluctuating asymmetry in nestling barn swallowsJOURNAL OF EVOLUTIONARY BIOLOGY, Issue 3 2000Cadée A barn swallow Hirundo rustica partial cross-fostering experiment with simultaneous brood size manipulation was conducted in two years with contrasting weather conditions, to estimate heritable variation in tarsus, tail and wing size and fluctuating asymmetry. Environmental stress had contrasting effects depending on trait type. Significant heritabilities for tarsus, tail and wing size were found only in enlarged broods irrespective of year effects, while tarsus asymmetry was significantly heritable in the year with benign weather conditions irrespective of brood size manipulation effects. Tail, wing and composite (multicharacter) asymmetry were never significantly heritable. The environment with the higher heritability generally had higher additive genetic variance and lower environmental variance, irrespective of trait type. Heritability was larger for trait size than for trait asymmetry. Patterns of genetic variation in nestlings do not necessarily translate to the juvenile or adult stage, as indicated by lack of correlation between nestling and fledgling traits. [source] Variation at two flowering time genes within and among populations of Arabidopsis thaliana: comparison with markers and traitsMOLECULAR ECOLOGY, Issue 13 2005V. LE CORRE Abstract Flowering Locus C (FLC) and Frigida are two interacting genes controlling flowering time variation in Arabidopsis thaliana. Variation at these genes was surveyed in 12 A. thaliana populations sampled in France. These populations were also screened for variation at molecular markers [12 microsatellites and 19 cleaved amplified polymorphic sequence (CAPS) markers] and at seven quantitative traits measured with and without vernalization. Seven populations were highly polymorphic at markers (HS = 0.57 at microsatellites, 0.24 at CAPS) and showed heritable variation for bolting time and some other traits. Five populations were genetically fixed or nearly fixed. QST for bolting time without vernalization was significantly higher than FST, suggesting local divergent selection. One of the two haplotype groups at FLC (FLCA) was very predominant (frequency of 99%). The first exon of Frigida showed elevated nonsynonymous variation, and nine loss-of-function mutations were found throughout the gene. The association between loss-of-function and earlier bolting was confirmed. Overall, 18 Frigida haplotypes were detected. The pattern of variation at Frigida was largely similar to that found at markers and traits, with the same populations being fixed or highly diverse. Metapopulation dynamics is thus probably the main factor shaping genetic variation in A. thaliana. However, FST for functional (FRI) vs. nonfunctional (FRI,) haplotypes was significantly higher than FST at markers. This suggested that loss-of-function at Frigida is under local selection for flowering time. [source] Genotype and temperature influence pea aphid resistance to a fungal entomopathogenPHYSIOLOGICAL ENTOMOLOGY, Issue 2 2003David A. Stacey Abstract. The influence of temperature on life history traits of four Acyrthosiphon pisum clones was investigated, together with their resistance to one genotype of the fungal entomopathogen Erynia neoaphidis. There was no difference among aphid clones in development rate, but they did differ in fecundity. Both development rate and fecundity were influenced by temperature, but all clones showed similar responses to the changes in temperature (i.e. the interaction term was nonsignificant). However, there were significant differences among clones in susceptibility to the pathogen, and this was influenced by temperature. Furthermore, the clones differed in how temperature influenced susceptibility, with susceptibility rankings changing with temperature. Two clones showed changes in susceptibility which mirrored changes in the in vitro vegetative growth rate of E. neoaphidis at different temperatures, whereas two other clones differed considerably from this expected response. Such interactions between genotype and temperature may help maintain heritable variation in aphid susceptibility to fungal pathogen attack and have implications for our understanding of disease dynamics in natural populations. This study also highlights the difficulties of drawing conclusions about the efficacy of a biological control agent when only a restricted range of pest genotypes or environmental conditions are considered. [source] Parallel effects of genetic variation in ACE activity in baboons and humansAMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY, Issue 1 2007Jenny Tung Abstract Like humans, savannah baboons (Papio sp.) show heritable interindividual variation in complex physiological phenotypes. One prominent example of such variation involves production of the homeostatic regulator protein angiotensin converting enzyme (ACE), which shows heritable variation in both baboons and humans. In humans, this phenotypic variation is associated with an Alu insertion,deletion polymorphism in the ACE gene, which explains approximately half of the variation in serum ACE activity. We identified a similar Alu insertion,deletion polymorphism in the baboon ACE homologue and measured its frequency in a wild population and a captive population of baboons. We also analyzed the contribution of ACE genotype at this indel to variation in serum ACE activity in the captive population. When conditioned on weight, a known factor affecting ACE activity in humans, age and ACE genotype both accounted for variance in ACE activity; in particular, we identified a significant nonadditive interaction between age and genotype. A model incorporating this interaction effect explained 21.6% of the variation in residual serum ACE activity. Individuals homozygous for the deletion mutation exhibited significantly higher levels of ACE activity than insertion,deletion heterozygotes at younger ages (10,14 years), but showed a trend towards lower levels of ACE activity compared with heterozygotes at older ages (,15 years). These results demonstrate an interesting parallel between the genetic architecture underlying ACE variation in humans and baboons, suggesting that further attention should be paid in humans to the relationship between ACE genetic variation and aging. Am J Phys Anthropol, 2007. © 2007 Wiley-Liss, Inc. [source] Obesity is Associated with Genetic Variants That Alter Dopamine AvailabilityANNALS OF HUMAN GENETICS, Issue 3 2006A. C. Need Summary Human and animal studies have implicated dopamine in appetite regulation, and family studies have shown that BMI has a strong genetic component. Dopamine availability is controlled largely by three enzymes: COMT, MAOA and MAOB, and by the dopamine transporter SLC6A3, and each gene has a well-characterized functional variant. Here we look at these four functional polymorphisms together, to investigate how heritable variation in dopamine levels influences the risk of obesity in a cohort of 1150, including 240 defined as obese (BMI , 30). The COMT and SLC6A3 polymorphisms showed no association with either weight, BMI or obesity risk. We found, however, that both MAOA and MAOB show an excess of the low-activity genotypes in obese individuals (MAOA:,2= 15.45, p = 0.004; MAOB:,2= 8.05, p = 0.018). Additionally, the MAOA genotype was significantly associated with both weight (p = 0.0005) and BMI (p = 0.001). When considered together, the ,at risk genotype' - low activity genotypes at both the MAOA and MAOB loci - shows a relative risk for obesity of 5.01. These results have not been replicated and, given the experience of complex trait genetics, warrant caution in interpretation. In implicating both the MAOA and MOAB variants, however, this study provides the first indication that dopamine availability (as opposed to other effects of MAOA) is involved in human obesity. It is therefore a priority to assess the associations in replication datasets. [source] Morphological variation and floral abnormalities in a trigger plant across a narrow altitudinal gradientAUSTRAL ECOLOGY, Issue 7 2009ARY A. HOFFMANN Abstract Local adaptation in alpine plants has been demonstrated across wide altitudinal gradients, but has rarely been examined across the alpine-to-montane transition that often encompasses only a few hundred metres. Here we characterize morphological variation in leaf and floral characteristics of the trigger plant Stylidium armeria along a narrow altitudinal gradient in the Bogong High Plains in Victoria. Across this gradient, which encompasses the high-elevation limit of this species, linear changes were found for floral scape height, leaf length and flower number. All these traits decreased with increasing altitude, whereas the frequency of abnormal flowers increased. When plants were grown in a common garden environment, an altitudinal pattern for flower abnormalities was no longer detected. However, altitudinal patterns for leaf length and scape height were maintained, albeit weaker than in the field. This indicates heritable variation for these morphological traits; the altitudinal patterns are likely to reflect the effects of selection by environmental factors that vary with altitude. Selection pressures remain to be identified but have generated both cogradient and countergradient patterns of variation. [source] |