Home About us Contact | |||
Herbivore Species (herbivore + species)
Selected AbstractsIs there a higher risk for herbivore outhreaks after cold mast years?ECOGRAPHY, Issue 6 2000An analysis of two plant/herbivore series from southern Norway Historical data on two plant-herbivore interactions from southern Norway were used to test the hypothesis that the degree of herbivore outbreaks in post-mast years is negatively related to summer temperatures in the mast year, because plants are more depressed after a high seed production if temperatures and thus the photosynthetic activity is low. The plant species were the sessile oak Quercus petraea and the bilberry Vaceinium myrtillus. For the former species post-mast years were identified from reports given by the local forest authorities for the period 1930,48, and from acorn export curves for the period 1949,98, For the latter species, post-mast years were identified mainly from bilberry export curves for the period 1920,31, from game reports for the period 1932,78. and from diary notes for the period 1979,87. The herbivore species used were the green oak leaf roller moth Tortrix viridana and the capercaillie Tetrao urogallus. Eight moth outbreaks on oak forests were reported by the forest authorities in the period 1930,98, and they all started in a post-mast year of the sessile oak. There were however also eleven post-mast years without moth outbreaks. According to game reports, observations and autumn counts, all increases in the autumn population size of capercaillie during 1920 88 occurred in or after a year with high bilberry production. Among i8 post-mast years, there were seven with strong increase, seven with slight or moderate increase, and four with no increase. For both herbivore species, post-mast years with marked population increases had significantly lower summer temperatures in the preceding (mast) year than had post-mast years with no or slight increases. For moth populations there also was a negative effect of high temperatures in April, possibly because moth eggs tend to hatch too early relative lo budburst if spring temperatures are high. For the capercaillie, high amount of precipitation in June , July seemed to have some negative impact on the autumn population sizes, as also found in previous studies. [source] Tritrophic interactions and trade-offs in herbivore fecundity on hybridising host plantsECOLOGICAL ENTOMOLOGY, Issue 3 2004Maria V. Cattell Abstract., 1. Interspecific plant hybridisation can have important evolutionary consequences for hybridising plants and for the organisms that they interact with on multiple trophic levels. In this study the effects of plant hybridisation on the abundance of herbivores and on the levels of herbivore parasitism were investigated. 2. Borrichia frutescens, B. arborescens, and their hybrid (B. × cubana) were censused for Asphondylia borrichiae galls and Pissonotus quadripustulatus plant hoppers in the Florida Keys. Levels of egg parasitism were determined by dissecting parental and hybrid stems and galls for herbivore and parasite eggs and larvae. Stem toughness and gall size are plant-mediated modes of protection from parasitism and these were also measured. For gall midges, fly size was measured as an estimate of fecundity. 3. Field censuses indicated that herbivore abundances varied on hybrid hosts relative to parent plant species and that the different herbivore species exhibited different patterns of abundance. Asphondylia borrichiae gall numbers followed the additive pattern of abundance while P. quadripustulatus numbers most closely resembled the dominance pattern. 4. Parasitism of P. quadripustulatus eggs was high on B. frutescens and the hybrids, and low on B. arborescens, which also had significantly tougher stems. Asphondylia borrichiae suffered the highest levels of parasitism on B. frutescens, the host plant which produced the smallest galls. On B. arborescens, which produced the largest galls, levels of A. borrichiae parasitism were lowest. Both parasitism and gall size were intermediate on the hybrid plants. Galls on B. arborescens and hybrid plants produced significantly smaller flies then those from B. frutescens suggesting that, when selecting hosts from among parent species and hybrids, gall flies may face a trade-off between escape from natural enemies and maximising fecundity. [source] Holly leaf-miners on two continents: what makes an outbreak species?ECOLOGICAL ENTOMOLOGY, Issue 2 2001Sabine Eber Summary 1. Some herbivore species periodically undergo damaging, high-density outbreak phases followed by less damaging low-density phases. Others maintain steady, low to moderate density levels that do little damage to their hosts. 2. Two closely related holly leaf-miner species were compared that share many ecological traits and have very similar life cycles, but only one of which exhibits outbreaks. Phytomyza ilicicola in the eastern U.S.A. varied widely in mortality and infestation levels, reaching local densities of over 10 mines per leaf. In contrast, Phytomyza ilicis in the U.K. showed low infestation and high mortality at all sites. Using data from the literature and from field studies, the factors responsible for these contrasting dynamics were sought. 3. Phytomyza ilicicola oviposits into the leaf lamina, and experiences weak larval competition only at high densities. Phytomyza ilicis oviposits into the leaf midrib, which leads to high mortality of young larvae before mine formation. Multiply mined leaves were therefore very common in P. ilicicola but rare in P. ilicis. 4. Differences in the parasitoid complexes of the two systems accounted for further differences in survival to adulthood. The main (larval) parasitoid, which was found to impose high, density-dependent mortality on P. ilicis, is missing on P. ilicicola. It is replaced by an egg,pupal parasitoid, which varies in its impact at differe,t sites. Multiple emergence of adults from multiply mined leaves is therefore widespread in P. ilicicola but does not occur in P. ilicis. 5. The differences in oviposition behaviour and in the parasitoid complexes are likely to allow P. ilicicola to outbreak when habitat conditions are favourable, while P. ilicis is always tightly regulated. [source] Do elevated atmospheric CO2 and O3 affect food quality and performance of folivorous insects on silver birch?GLOBAL CHANGE BIOLOGY, Issue 3 2010PETRI A. PELTONEN Abstract The individual and combined effects of elevated CO2 and O3 on the foliar chemistry of silver birch (Betula pendula Roth) and on the performance of five potential birch-defoliating insect herbivore species (two geometrid moths, one lymantrid moth and two weevils) were examined. Elevated CO2 decreased the water concentration in both short- and long-shoot leaves, but the effect of CO2 on the concentration of nitrogen and individual phenolic compounds was mediated by O3 treatment, tree genotype and leaf type. Elevated O3 increased the total carbon concentration only in short-shoot leaves. Bioassays showed that elevated CO2 increased the food consumption rate of juvenile Epirrita autumnata and Rheumaptera hastata larvae fed with short- and long-shoot leaves in spring and mid-summer, respectively, but had no effect on the growth of larvae. The contribution of leaf quality variables to the observed CO2 effects indicate that insect compensatory consumption may be related to leaf age. Elevated CO2 increased the food preference of only two tested species: Phyllobius argentatus (CO2 alone) and R. hastata (CO2 combined with O3). The observed stimulus was dependent on tree genotype and the measured leaf quality variables explained only a portion of the stimulus. Elevated O3 decreased the growth of flush-feeding young E. autumnata larvae, irrespective of CO2 concentration, apparently via reductions in general food quality. Therefore, the increasing tropospheric O3 concentration could pose a health risk for juvenile early-season birch folivores in future. In conclusion, the effects of elevated O3 were found to be detrimental to the performance of early-season insect herbivores in birch whereas elevated CO2 had only minor effects on insect performance despite changes in food quality related foliar chemistry. [source] Consequences of simultaneous elevation of carbon dioxide and temperature for plant,herbivore interactions: a metaanalysisGLOBAL CHANGE BIOLOGY, Issue 1 2006E. L. ZVEREVA Abstract The effects of elevated carbon dioxide on plant,herbivore interactions have been summarized in a number of narrative reviews and metaanalyses, while accompanying elevation of temperature has not received sufficient attention. The goal of our study is to search, by means of metaanalysis, for a general pattern in responses of herbivores, and plant characteristics important for herbivores, to simultaneous experimental increase of carbon dioxide and temperature (ECET) in comparison with both ambient conditions and responses to elevated CO2 (EC) and temperature (ET) applied separately. Our database includes 42 papers describing studies of 31 plant species and seven herbivore species. Nitrogen concentration and C/N ratio in plants decreased under both EC and ECET treatments, whereas ET had no significant effect. Concentrations of nonstructural carbohydrates and phenolics increased in EC, decreased in ET and did not change in ECET treatments, whereas terpenes did not respond to EC but increased in both ET and ECET; leaf toughness increased in both EC and ECET. Responses of defensive secondary compounds to treatments differed between woody and green tissues as well as between gymnosperm and angiosperm plants. Insect herbivore performance was adversely affected by EC, favoured by ET, and not modified by ECET. Our analysis allowed to distinguish three types of relationships between CO2 and temperature elevation: (1) responses to EC do not depend on temperature (nitrogen, C/N, leaf toughness, phenolics in angiosperm leaves), (2) responses to EC are mitigated by ET (sugars and starch, terpenes in needles of gymnosperms, insect performance) and (3) effects emerge only under ECET (nitrogen in gymnosperms, and phenolics and terpenes in woody tissues). This result indicates that conclusions of CO2 elevation studies cannot be directly extrapolated to a more realistic climate change scenario. The predicted negative effects of CO2 elevation on herbivores are likely to be mitigated by temperature increase. [source] Long-term exposure to elevated CO2 in a Florida scrub-oak forest increases herbivore densities but has no effect on other arthropod guildsINSECT CONSERVATION AND DIVERSITY, Issue 2 2010PETER STILING Abstract., 1.,This study uses pitfall traps and sticky traps to examine the effects of elevated CO2 on the densities of insect herbivores, insectivores, and detritivores. 2.,Pitfall trapping for the last 3 years of 11 years of continuously elevated CO2 revealed increases of insect herbivore species such as Thysanoptera (thrips), Hemiptera, and Lepidoptera, but no effects on insectivores such as spiders, parasitic wasps, and ants; or on detritivores such as Diptera (flies), Psocoptera (book lice), Blattodea (cockroaches), Collembola (spring tails), Orthoptera (crickets), and Coleoptera (beetles). 3.,As the bottom-up effects of elevated CO2 are transmitted through plants to herbivores, they do not appear to reach insect natural enemies or decomposers. [source] Beta diversity of plant,insect food webs in tropical forests: a conceptual frameworkINSECT CONSERVATION AND DIVERSITY, Issue 1 2009VOJTECH NOVOTNY Abstract., 1Beta diversity of plant,herbivore food webs, defined as turnover of trophic interactions between the food webs, represents a potentially useful extension of traditional studies of plant and herbivore beta diversity as it integrates spatial turnover of plant and herbivore species with changes in herbivore host plant preferences. 2Beta diversity of plant,herbivore food webs can be partitioned into four components, corresponding to the turnover of plant,herbivore interactions due to change in (i) both plant and herbivore species, (ii) plant, but not herbivore, species, (iii) herbivore, but not plant, species, and (iv) herbivore host preferences between food webs. These components can be quantified using a range of existing beta diversity indices. 3Relative magnitude of plant and herbivore beta diversity of plant,herbivore food webs can be analysed as an outcome of herbivore (i) host specificity, (ii) ability to track host plant populations by dispersal, and (iii) response to environmental conditions, competitors and enemies. The relative importance of these factors in tropical ecosystems remains to be determined. [source] Quantifying the grazing impacts associated with different herbivores on rangelandsJOURNAL OF APPLIED ECOLOGY, Issue 6 2007S. D. ALBON Summary 1Rangelands, produced by grazing herbivores, are important for a variety of agricultural, hunting, recreation and conservation objectives world-wide. Typically, there is little quantitative evidence regarding the magnitude of the grazing impact of different herbivores on rangeland habitats to inform their management. 2We quantified the grazing and trampling impact of sheep, cattle, red deer Cervus elaphus, rabbits Oryctolagus cuniculus, mountain hares Lepus timidus and red grouse Lagopus lagopus on open-hill habitats in 11 areas of upland Scotland. The degradation of heather in upland Scotland Calluna vulgaris -dominated habitats, of conservation significance at a European scale, has been attributed, anecdotally, to increasing sheep and red deer populations. 3Field indicators of habitat condition were used to generate a five-point scale of impact in vegetation polygons of seven habitats. The presence of each herbivore species was attributed on the basis of ,signs' of occupancy. A Bayesian regression model was used to analyse the association of herbivore species with grazing impact on plant communities, controlling for environmental attributes. 4Overall the presence of sheep was associated with the largest increase (7/11 areas) in grazing and trampling impact of all herbivores. Cattle had the second largest impact but generally this was restricted to fewer areas and habitats than sheep. In contrast, impacts associated with wild herbivores tended to be small and only significant locally. 5Although red deer presence was associated with a significantly lower impact than sheep, this impact increased with increasing deer density at both land-ownership and regional scales. For sheep there was little or no evidence of density dependence. 6Synthesis and applications. The higher impact associated with sheep presence probably reflects their greater aggregation because of their limited ranging behaviour, exacerbated by sheep being herded in places convenient for land managers. Consequently, future reductions in sheep numbers as a result of reform of European Union farming policies may limit the extent of their impact, but not necessarily the local magnitude. However, reductions in sheep stocks may lead to increases in deer densities, with greater impact, particularly in heather-dominated habitats. Where habitat conservation is a priority this may well require a reduction in deer numbers. [source] Why are very large herbivores absent from Australia?JOURNAL OF BIOGEOGRAPHY, Issue 4 2000A new theory of micronutrients Abstract Aim We propose a Megacatalyst Theory, based on the pivotal role of the micronutrients iodine (I), cobalt (Co) and selenium (Se), in answer to the body size anomaly of herbivores on different continents, and the previously unexplained absence of megaherbivores in certain environments. Location It is anomalous that megaherbivores are absent from Australia while present in even dry and nutrient-poor parts of southern Africa, and that they have been exterminated from the Americas, but not south-east Asia. Methods We hypothesize that I, Co and Se are micronutrients in quantity, but megacatalysts in effect, determining maximum body size and pace of life, hence whether energy is used by animals or fire. The Megacatalyst Theory suggests that the greater the reproductive rate and brain size relative to body size, the greater the probable demand for I, Co and Se. Results Balanced supply of I, Co and Se, within narrow tolerances, is elusive because of disparate cycles: I gravitates towards the sea, whereas Co and Se are concentrated in ultramafics and organic shales, respectively. Sufficiency of these micronutrients, at less than toxic concentrations, is vital for rapid metabolism and growth, particularly of the nervous system. Iodine controls thermogenesis, Co controls the gut fermentation supplying herbivores, and Se controls biochemical damage where both processes occur rapidly. The supply of Co allows vegetation to be metabolized instead of combusted, by promoting digestion of fibre by gut microbes. Herbivores demand I, Co and Se in greater concentrations than palatable plants necessarily contain, as an increasing proportion of energy is fermented from fibre with increasing body size. Economy of scale is limited by loss of I in urine (partly compensated by thyroid size), Co in faeces (partly compensated by gut compartments), and Se both ways. Main conclusions The larger the herbivore species, the more it may depend on supplementation in order to survive predation by humans. As body mass increases, Co becomes deficient before I, because it is essential for rumination, and cannot be absorbed by the skin. Moderate uplift of a fairly flat landscape sustainably supplies I from mineralized springs, and Co from rocks (and Se from both), avoiding the excess of I in the sea and the excess of Co on high mountains. Iodine and Se leached to groundwater under dry climates are inaccessible to herbivores on a continent as flat as Australia, where even kangaroos have limited fecundity and intelligence compared to southern African ruminants of similar body mass. Where springs and associated earth-licks were available in the late Pleistocene, megaherbivores could evolve to survive the era of domestication. [source] The role of water abundance, thermoregulation, perceived predation risk and interference competition in water access by African herbivoresAFRICAN JOURNAL OF ECOLOGY, Issue 3 2008Marion Valeix Abstract In African savannas, surface water can become limiting and an understanding of how animals address the trade-offs between different constraints to access this resource is needed. Here, we describe water access by ten African herbivore species in Hwange National Park, Zimbabwe, and we explore four possible determinants of the observed behaviours: water abundance, thermoregulation, perceived predation risk and interference competition. On average, herbivores were observed to drink in 80% of visits to a waterhole. The probability of drinking was higher in 2003 (474 mm) than in 2004 (770 mm), and at the end of the dry season than at its beginning. For larger species, this probability may also be related to risks of interference competition with elephants or other herbivores. For smaller species, this probability may also be related to the perceived risk of predation. We also investigate the time spent accessing water to drink. The influence of herd size and the presence of young on the time spent accessing water for most species suggests that perceived predation risk plays a role. Thermoregulation also affects this time: during the hottest periods, herbivores spend less time in open areas, unless when wind is strong, probably owing to evapotranspired heat loss. Résumé Dans les savanes africaines, l'eau de surface disponible peut devenir un facteur limitant et il est nécessaire de comprendre comment les animaux agissent face aux différentes contraintes que pose l'accès à cette ressource. Nous décrivons ici l'accès à l'eau de dix herbivores africains du Parc National de Hwange, au Zimbabwe, et nous explorons quatre facteurs qui sont peut-être déterminants dans les comportements observés: l'abondance de l'eau, la thermorégulation, le risque de prédation ressenti et la compétition/ interférence. En moyenne, on a observé que les herbivores buvaient lors de 80% de leurs visites au point d'eau. La probabilité qu'ils boivent étai plus forte en 2003 (474 mm) qu'en 2004 (770 mm), et à la fin de la saison sèche qu'au début. Pour les plus grandes espèces, cette probabilité pourrait aussi être liée aux risques de compétition par interférence avec les éléphants ou d'autres herbivores. Pour les plus petites espèces, cette probabilité pourrait aussi être liée au risque de prédation ressenti. Nous avons aussi étudié le temps passéà se rendre au point d'eau pour y boire. L'influence de la taille du groupe et de la présence de jeunes sur le temps pris par la plupart des espèces pour se rendre au point d'eau laisse penser que la perception du risque de prédation joue un rôle. La thermorégulation affecte aussi cette durée: pendant les périodes les plus chaudes, les herbivores passent moins de temps dans les espaces ouverts, sauf si le vent est fort, probablement à cause de la perte de chaleur par évapotranspiration. [source] Fertilizer affects the behaviour and performance of Plutella xylostella on brassicasAGRICULTURAL AND FOREST ENTOMOLOGY, Issue 3 2009Joanna T. Staley Abstract 1,Foliar nitrogen concentration, which can be manipulated in crop plants by fertilizer supply, has long been recognized as a major factor in phytophagous insect abundance and performance. More recently, the type of fertilizer supplied has been shown to influence the abundance of some herbivore species. The diamondback moth Plutella xylostella is a global pest of Brassica crops. Although it has been the subject of numerous studies on host-plant resistance and pest control, few studies have addressed the effect of abiotic factors, such as nutrient supply, on its performance and behaviour. 2,We assessed oviposition preference, larval feeding preference and larval performance of P. xylostella on two cultivars of Brassica oleracea. Plants were grown using two fertilizer types, John Innes fertilizer and an organic animal manure, at high and low concentrations. 3,Plutella xylostella laid more eggs on cultivar Derby Day than Drago. Derby Day was also the cultivar on which larval performance was maximized. However, differences in larval performance between cultivars were only found when plants were grown in compost with John Innes fertilizer, and not when fertilized with animal manure. 4,Foliar nitrogen concentration was greater in plants grown in high fertilizer treatments but did not differ between cultivars. The concentrations of three glucosinolate compounds (glucoiberin, sinigrin and glucobrassicin) were greater in the high fertilizer treatments. Glucosinolate concentrations were higher in the Drago than the Derby Day cultivar. 5,These results are discussed in relation to the preference-performance hypothesis, and the assessment of plant resistance differences between cultivars using different types of fertilizer. [source] MANAGING ECOLOGICALLY INTERDEPENDENT SPECIESNATURAL RESOURCE MODELING, Issue 1 2003ERWIN H. BULTE ABSTRACT. We analyze open access harvesting of a predator species, while allowing for ecological interaction with herbivore species (the prey). In contrast to existing studies, we find that under some conditions open access harvesting may contribute to the abundance of predator and prey species. Particularly in fragmented habitats, moderate harvesting intensity may be a low-cost substitute for management, and measures to reduce harvesting may result in collapse of predator and prey stock. These results highlight the importance of analyzing the ecological underpinnings of systems when manipulating economic parameters to promote conservation. [source] Stability of ecosystem properties in response to above-ground functional group richness and compositionOIKOS, Issue 1 2000David A. Wardle While there has been a rapidly increasing research effort focused on understanding whether and how composition and richness of species and functional groups may determine ecosystem properties, much remains unknown about how these community attributes affect the dynamic properties of ecosystems. We conducted an experiment in 540 mini-ecosystems in glasshouse conditions, using an experimental design previously shown to be appropriate for testing for functional group richness and composition effects in ecosystems. Artificial communities representing 12 different above-ground community structures were assembled. These included treatments consisting of monoculture and two- and four-species mixtures from a pool of four plant species; each plant species represented a different functional group. Additional treatments included two herbivore species, either singly or in mixture, and with or without top predators. These experimental units were then either subjected to an experimentally imposed disturbance (drought) for 40 d or left undisturbed. Community composition and drought both had important effects on plant productivity and biomass, and on several below-ground chemical and biological properties, including those linked to the functioning of the decomposer subsystem. Many of these compositional effects were due to effects both of plant and of herbivore species. Plant functional group richness also exerted positive effects on plant biomass and productivity, but not on any of the below-ground properties. Above-ground composition also had important effects on the response of below-ground properties to drought and thus influenced ecosystem stability (resistance); effects of composition on drought resistance of above-ground plant response variables and soil chemical properties were weaker and less consistent. Despite the positive effects of plant functional group richness on some ecosystem properties, there was no effect of richness on the resistance of any of the ecosystem properties we considered. Although herbivores had detectable effects on the resistance of some ecosystem properties, there were no effects of the mixed herbivore species treatment on resistance relative to the single species herbivore treatments. Increasing above-ground food chain length from zero to three trophic levels did not have any consistent effect on the stability of ecosystem properties. There was no evidence of either above-ground composition or functional group richness affecting the recovery rate of ecosystem properties from drought and hence ecosystem resilience. Our data collectively point to the role of composition (identity of functional group), but not functional group richness, in determining the stability (resistance to disturbance) of ecosystem properties, and indicates that the nature of the above-ground community can be an important determinant of the consistency of delivery of ecosystem services. [source] Abundance,body mass relationships among insects along a latitudinal gradientAUSTRAL ECOLOGY, Issue 3 2008NIGEL R. ANDREW Abstract We investigated the relationship between abundance and body size (body mass) of 162 insect herbivore species on the host plant Acacia falcata along its entire coastal latitudinal distribution (eastern Australia), spanning a gradient in mean annual temperature of 4.3°C. We extend previous research by assessing these relationships at different spatial scales (latitudes pooled, among latitudes and within latitudes) and at different taxonomic levels (insect phytophages pooled, phytophagous Coleoptera and Hemiptera, and five component suborders/superfamilies). Insect species were collected from two orders (Hemiptera and Coleoptera) and five component suborders/superfamilies. There were no consistent trends in the relationships (linear or polygonal/hump-shaped) between abundance and body mass when latitudes were pooled, among latitudes, or when phytophagous insect species were separated into their component suborder/superfamily groups. The reason for the lack of consistent trends might be due to the insect herbivores not fully exploiting their host plant and the relative absence of competition among herbivore species for food resources. This is further assessed in relation to the lack of a consistent pattern in species richness of Coleoptera and Hemiptera herbivores from the same dataset and rates of chewing and sap-sucking herbivory along the same latitudinal gradient. Future studies of abundance,body size relationships are discussed in relation to sampling across environmental gradients and accounting for the influence of host plant identity and insect phylogeny. [source] Difference in Intensity of Ant Defense among Three Species of Macaranga Myrmecophytes in a Southeast Asian Dipterocarp Forest,BIOTROPICA, Issue 2 2000Takao Itioka ABSTRACT To examine interspecific variation in the intensity of ant defense among three sympatric species of obligate myrme-cophytes of Macaranga (Euphorbiaceae), we measured the ratio of ant biomass to plant biomass, ant aggressiveness to artificial damage on host plants, and increase in herbivore damage on host plants when symbiont ants were removed. Increase in herbivore damage from two- and four-week ant exclusion varied significantly among the three species. The decreasing order of vulnerability to herbivory was M. winkleri, M. trachyphylla, and M. beccariana. The antip/ant biomass ratio (= rate of the dry weight of whole ant colonies to the dry weight of whole aboveground plant parts) and ant agressiveness also varied significantly among the three species; the orders of both the ant/plant biomass ratio and ant aggressiveness were the same as in the herbivory increase. These results indicated that the intensity of ant defense differs predictably among sympatric species of obligate myrmecophytes on Macaranga. In addition to the interspecific difference in the total intensity of ant defense, when symbiont ants were excluded, both patterns of within-plant variation in the amount of herbivore damage and compositions of herbivore species that caused the damage differed among species. This suggests that the three Macaranga species have different systems of ant defense with reference to what parts of plant tissue are protected and what herbivorous species are avoided by ant defense. Thus, it is important to consider the interspecific variation in ant defense among Macaranga species to understand the herbivore community on Macaranga plants and the mechanisms that promote the coexistence of multiple Macaranga myrmecophytes. [source] |