Herbivore Attack (herbivore + attack)

Distribution by Scientific Domains
Distribution within Life Sciences


Selected Abstracts


Plasticity of clonal integration in the perennial herb Linaria vulgaris after damage

FUNCTIONAL ECOLOGY, Issue 3 2006
K. HELLSTRÖM
Summary 1Clonal integration in plants can improve their ability to cope with habitat heterogeneity. Integration may increase in response to damage, such as herbivore attack, if undamaged ramets support damaged ones. To test this, we studied the effects of apex removal and substantial defoliation on the performance of the clonal perennial herb Linaria vulgaris Mill. in a common-garden growth experiment and a 13C-labelling study. 2In the growth experiment, contrary to expectations, the target ramet could compensate for damage better when the other ramets in the clone were also damaged, indicating within-clone competition for resources rather than support to damaged ramets. 3In the 13C-labelling experiment, 5·7% of the label moved to a neighbour ramet in controls. Apex removal resulted in a negative net translocation of 13C in the damaged ramet, but defoliation led to zero net translocation. 4The observed lack of support to damaged ramets in Linaria suggests that plasticity of clonal integration in this species includes competition between sibling ramets. Although young ramets may be supported, resources are not directed towards a single damaged ramet if there are more viable intact ramets in the clone. Our main results are consistent with the notion that resource allocation among ramets depends on their relative value in terms of expected fitness profits in heterogeneous environments. [source]


Plant ontogeny and chemical defence: older seedlings are better defended

OIKOS, Issue 5 2009
Arnaud Elger
Although patterns of seedling selection by herbivores are strongly influenced by plant age and the expression of anti-herbivore defence, it is unclear how these characteristics interact to influence seedling susceptibility to herbivory. We tracked ontogenetic changes in a range of secondary metabolites (total phenolics, alkaloids and cyanogenic glycosides) commonly associated with seedling defence for nine sympatric British grassland species. Although there was marked variation in concentrations of secondary metabolites between different species, we found a consistent increase in the deployment of phenolics, alkaloids and cyanogenics with seedling age for six of the seven dicotyledonous species examined. The two grass species by contrast exhibited low levels of secondary metabolites across all developmental stages, possibly due to an investment in structural (silica phytoliths) defence. Our results corroborate species-specific patterns of seedling herbivory observed in field studies, and offer some explanation for the relatively high sensitivity to herbivore attack frequently observed for relatively young seedlings compared with their older conspecifics. Our results also support predictions made by the growth,differentiation balance hypothesis regarding ontogenetic changes in resource allocation to anti-herbivore defence for a range of potential chemical defences and across a range of sympatric plant species presumably subject to broadly similar selective pressures at the regeneration stage. [source]


Herbivory-induced signalling in plants: perception and action

PLANT CELL & ENVIRONMENT, Issue 9 2009
JIANQIANG WU
ABSTRACT Plants and herbivores have been interacting for millions of years. Over time, plants have evolved mechanisms to defend against herbivore attacks. Herbivore-challenged plants reconfigure their metabolism to produce compounds that are toxic, repellant or anti-digestive for the herbivores. Some compounds are volatile signals that attract the predators of herbivores. All these responses are tightly regulated by a signalling network triggered by the plant's perception machinery. Several compounds that specifically elicit herbivory-induced responses in plants have been isolated from herbivore oral secretions and oviposition fluids. Elicitor perception is rapidly followed by cell membrane depolarization, calcium influx and mitogen-activated protein kinase (MAPK) activation; plants also elevate the concentrations of reactive oxygen and nitrogen species, and modulate phytohormone levels accordingly. In addition to these reactions in the herbivore-attacked regions of a leaf, defence responses are also mounted in unattacked parts of the attacked leaf and as well in unattacked leaves. In this review, we summarize recent progress in understanding how plants recognize herbivory, the involvement of several important signalling pathways that mediate the responses to herbivore attack and the signals that transduce local into systemic responses. [source]


Root growth dynamics of Nicotiana attenuata seedlings are affected by simulated herbivore attack

PLANT CELL & ENVIRONMENT, Issue 10 2007
GRÉGOIRE M. HUMMEL
ABSTRACT Many studies demonstrate resource-based trade-offs between growth and defence on a large timescale. Yet, the short-term dynamics of this growth reaction are still completely unclear, making it difficult to explain growth-defence trade-offs mechanistically. In this study, image-based non-destructive methods were used to quantify root growth reactions happening within hours following simulated herbivore attack. The induction of wound reactions in Nicotiana attenuata in the seedling stage led to transiently decreased root growth rates. Application of the oral secretion of the specialist herbivore Manduca sexta to the leaves led to a transient decrease in root growth that was more pronounced than if a mere mechanical wounding was imposed. Root growth reduction was more pronounced than leaf growth reduction. When fatty acid,amino acid conjugates (FACs) were applied to wounds, root growth reduction occurred in the same intensity as when oral secretion was applied. Timing of the transient growth reduction coincided with endogenous bursts of jasmonate (JA) and ethylene emissions reported in literature. Simulation of a wound response by applying methyl jasmonate (MeJA) led to more prolonged negative effects on root growth. Increased nicotine concentrations, trichome lengths and densities were observed within 72 h in seedlings that were treated with MeJA or that were mechanically wounded. Overall, these reactions indicate that even in a very early developmental stage, the diversion of plant metabolism from primary (growth-sustaining) to secondary (defence-related) metabolism can cause profound alterations of plant growth performance. [source]


Silicon-augmented resistance of plants to herbivorous insects: a review

ANNALS OF APPLIED BIOLOGY, Issue 2 2009
O.L. Reynolds
Abstract Silicon (Si) is one of the most abundant elements in the earth's crust, although its essentiality in plant growth is not clearly established. However, the importance of Si as an element that is particularly beneficial for plants under a range of abiotic and biotic stresses is now beyond doubt. This paper reviews progress in exploring the benefits at two- and three-trophic levels and the underlying mechanism of Si in enhancing the resistance of host plants to herbivorous insects. Numerous studies have shown an enhanced resistance of plants to insect herbivores including folivores, borers, and phloem and xylem feeders. Silicon may act directly on insect herbivores leading to a reduction in insect performance and plant damage. Various indirect effects may also be caused, for example, by delaying herbivore establishment and thus an increased chance of exposure to natural enemies, adverse weather events or control measures that target exposed insects. A further indirect effect of Si may be to increase tolerance of plants to abiotic stresses, notably water stress, which can in turn lead to a reduction in insect numbers and plant damage. There are two mechanisms by which Si is likely to increase resistance to herbivore feeding. Increased physical resistance (constitutive), based on solid amorphous silica, has long been considered the major mechanism of Si-mediated defences of plants, although there is recent evidence for induced physical defence. Physical resistance involves reduced digestibility and/or increased hardness and abrasiveness of plant tissues because of silica deposition, mainly as opaline phytoliths, in various tissues, including epidermal silica cells. Further, there is now evidence that soluble Si is involved in induced chemical defences to insect herbivore attack through the enhanced production of defensive enzymes or possibly the enhanced release of plant volatiles. However, only two studies have tested for the effect of Si on an insect herbivore and third trophic level effects on the herbivore's predators and parasitoids. One study showed no effect of Si on natural enemies, but the methods used were not favourable for the detection of semiochemical-mediated effects. Work recently commenced in Australia is methodologically and conceptually more advanced and an effect of Si on the plants' ability to generate an induced response by acting at the third trophic level was observed. This paper provides the first overview of Si in insect herbivore resistance studies, and highlights novel, recent hypotheses and findings in this area of research. Finally, we make suggestions for future research efforts in the use of Si to enhance plant resistance to insect herbivores. [source]


Resource allocation to defence and growth are driven by different responses to generalist and specialist herbivory in an invasive plant

JOURNAL OF ECOLOGY, Issue 5 2010
Wei Huang
Summary 1.,Invasive plants often have novel biotic interactions in their introduced ranges. These interactions, including less frequent herbivore attacks, may convey a competitive advantage over native plants. Invasive plants may vary in defence strategies (resistance vs. tolerance) or in response to the type of herbivore (generalists vs. specialists), but no study to date has examined this broad set of traits simultaneously. 2.,Here, we examined resistance and tolerance of Chinese tallow (Triadica sebifera) populations from the introduced and native ranges to generalist (Cnidocampa flavescens) and specialist herbivores (Gadirtha inexacta) in the native range. 3.,In a field common-garden test of resistance, caterpillars of each species were raised on plants from native and invasive populations. We found the specialist grew larger on and consumed more mass of invasive plant populations than native populations, while the generalist showed the same performance between them. The results were consistent with our laboratory bioassay using excised leaves. Chemical analyses showed that the invasive plants had lower tannin content and higher ratio of carbohydrate to protein than those of their native counterparts, suggesting that plants from invasive populations have altered chemistry that has a larger impact on specialist than on generalist resistance. 4.,To test for differences in herbivore tolerance, plants were first defoliated by specialist or generalist herbivory and then allowed to regrow for 100 days in a field common garden. We found that plants from invasive populations had greater herbivore tolerance than native populations, especially for tolerance to generalists. They also grew more rapidly than native counterparts in the absence of herbivory. 5.,Synthesis. The results of these experiments indicate that differences in selective pressures between ranges have caused dramatic reductions in resistance to specialist herbivores and those changes in plant secondary chemistry likely underlie these differences. The greater tolerance of invasive populations to herbivory appears to at least partly reflect an increase in growth rate in the introduced range. The greater tolerance to generalist herbivores suggests the intriguing possibility of selection for traits that allow plants to tolerate generalist herbivores more than specialist herbivores. [source]


Herbivory-induced signalling in plants: perception and action

PLANT CELL & ENVIRONMENT, Issue 9 2009
JIANQIANG WU
ABSTRACT Plants and herbivores have been interacting for millions of years. Over time, plants have evolved mechanisms to defend against herbivore attacks. Herbivore-challenged plants reconfigure their metabolism to produce compounds that are toxic, repellant or anti-digestive for the herbivores. Some compounds are volatile signals that attract the predators of herbivores. All these responses are tightly regulated by a signalling network triggered by the plant's perception machinery. Several compounds that specifically elicit herbivory-induced responses in plants have been isolated from herbivore oral secretions and oviposition fluids. Elicitor perception is rapidly followed by cell membrane depolarization, calcium influx and mitogen-activated protein kinase (MAPK) activation; plants also elevate the concentrations of reactive oxygen and nitrogen species, and modulate phytohormone levels accordingly. In addition to these reactions in the herbivore-attacked regions of a leaf, defence responses are also mounted in unattacked parts of the attacked leaf and as well in unattacked leaves. In this review, we summarize recent progress in understanding how plants recognize herbivory, the involvement of several important signalling pathways that mediate the responses to herbivore attack and the signals that transduce local into systemic responses. [source]