Herbivores

Distribution by Scientific Domains
Distribution within Life Sciences

Kinds of Herbivores

  • different herbivore
  • generalist herbivore
  • generalist insect herbivore
  • insect herbivore
  • invertebrate herbivore
  • large herbivore
  • mammalian herbivore
  • native herbivore
  • other herbivore
  • root herbivore
  • specialist herbivore
  • wild herbivore

  • Terms modified by Herbivores

  • herbivore abundance
  • herbivore attack
  • herbivore community
  • herbivore damage
  • herbivore density
  • herbivore effects
  • herbivore feeding
  • herbivore impact
  • herbivore interaction
  • herbivore performance
  • herbivore population
  • herbivore population dynamics
  • herbivore species
  • herbivore survival

  • Selected Abstracts


    BEHAVIORAL ADAPTATIONS INCREASE THE VALUE OF ENEMY-FREE SPACE FOR HELIOTHIS SUBFLEXA, A SPECIALIST HERBIVORE

    EVOLUTION, Issue 4 2002
    Sara J. Oppenheim
    Abstract We investigated the importance of specialized behaviors in the use of enemy-free space by comparing the host-use behavior of two closely related moths, Heliothis subflexa Guenee and H. virescens Fabricius. Heliothis subflexa is a specialist on plants in the genus Physalis, whereas H. virescens is an extreme generalist, feeding on plants in at least 14 families. Heliothis subflexa uses the inflated calyx surrounding Physalis fruits as enemy-free space, and field rates of parasitism for H. subflexa on Physalis are much lower than for H. virescens on tobacco and cotton, common hosts found in the same habitat as Physalis. If Physalis' architecture were solely responsible for H. subflexa's low rates of parasitism on Physalis, we predicted thatH. virescens larvae experimentally induced to feed on Physalis would experience parasitism rates similar to those ofH. subflexa. We found, however, that specialized host-use and host-acceptance behaviors are integral to the use of enemy-free space on Physalis and strongly augment the effects of the structural refuge. In laboratory assays, we found considerable differences between the larval behavior of the specialist, H. subflexa, and the generalist, H. virescens, and these contributed to H. subflexa's superior use of enemy-free space on Physalis. We tested the importance of these behavioral differences in the field by comparing parasitism of H. virescens on Physalis, H. virescens on tobacco, and H. subflexa on Physalis by Cardiochiles nigriceps Vierick, a specialist braconid parasitoid. For H. virescens, a threefold decrease in parasitism occurred when feeding on Physalis (mean parasitism ± SEM = 13 ± 4%) rather than tobacco (43 ± 4%), a difference we attribute to the structural refuge provided by Physalis. However, parasitism ofH. virescens on Physalis was more than ten times as great as that of H. subflexa on Physalis (1 ± 4%), supporting the hypothesis that specialized behaviors have a substantial impact on use of Physalis as enemy-free space. Behavioral adaptations may be central to the use of enemy-free space by phytophagous insects and may act as an important selective force in the evolution of dietary specialization. [source]


    INDUCED DEFENSES IN MACROALGAE: THE HERBIVORE MAKES A DIFFERENCE

    JOURNAL OF PHYCOLOGY, Issue 3 2001
    Charles D. Amsler
    First page of article [source]


    Herbivore and pathogen damage on grassland and woodland plants: a test of the herbivore uncertainty principle

    ECOLOGY LETTERS, Issue 4 2002
    Stefan A. Schnitzer
    Researchers can alter the behaviour and ecology of their study organisms by conducting such seemingly benign activities as non-destructive measurements and observations. In plant communities, researcher visitation and measurement of plants may increase herbivore damage in some plant species while decreasing it in others. Simply measuring plants could change their competitive ability by altering the amount of herbivore damage that they suffer. Currently, however, there is only limited empirical evidence to support this `herbivore uncertainty principle' (HUP). We tested the HUP by quantifying the amount of herbivore and pathogen damage in 13 plant species (> 1400 individuals) at four different visitation intensities at Cedar Creek Natural History Area, Minnesota, USA. Altogether, we found very little evidence to support the HUP at any intensity of visitation. Researcher visitation did not alter overall plant herbivore damage or survival and we did not detect a significant visitation effect in any of the 13 species. Pathogen damage also did not significantly vary among visitation treatments, although there was some evidence that high visitation caused slightly higher pathogen damage. Based on our results, we question whether this phenomenon should be considered a `principle' of plant ecology. [source]


    Herbivore and neighbour effects on tundra plants depend on species identity, nutrient availability and local environmental conditions

    JOURNAL OF ECOLOGY, Issue 1 2008
    Anu Eskelinen
    Summary 1I performed a factorial transplant experiment to test the roles of plant,plant interactions, herbivory by mammal grazers and resource availability for plant performance in two contrasting habitat types in a mountain tundra environment. 2Three perennial dicot herbs, Solidago virgaurea, Erigeron uniflorus and Saussurea alpina, were used as target plants to study the effects of neighbour removal and grazer exclusion, and nutrient enrichment and liming on plant growth, survival and reproductive success. These treatments were replicated in two contrasting habitat types, infertile acidic and fertile non-acidic tundra heaths. 3The effects of plant,plant interactions on Saussurea varied from facilitation in infertile acidic habitats to competition in fertile non-acidic habitats and in nutrient-enriched conditions, while the overall performance of Saussurea was strongly negatively influenced by the presence of grazers, the effects being greater when plants were fertilized and in fertile non-acidic heaths. Erigeron performed better under nutrient-enriched conditions than in unfertilized plots, when neighbours had been removed. Solidago was negatively affected by grazing and this impact was greater in nutrient-enriched plots and in non-acidic heaths than in acidic heaths and for unfertilized controls. There were no interactions between neighbour removal and herbivory in any of the three species, indicating that these processes operated independently. 4Grazer-preferred tall plants are strongly limited by consumption by mammal herbivores in nutrient-enriched conditions and in inherently fertile habitats. By contrast, arctic,alpine specialists and species of low stature experience increased competition with neighbouring vegetation in fertile habitats and in enriched nutrient conditions. 5Synthesis. Overall, the results suggest that the strength and directions of plant,plant and plant,herbivore interactions depend on plant species identity and are modified by soil edaphic factors to govern vegetation processes in tundra plant communities. These findings have important implications for understanding the forces structuring vegetation in barren tundra ecosystems under a changing environment. [source]


    Effects of plant diversity, plant productivity and habitat parameters on arthropod abundance in montane European grasslands

    ECOGRAPHY, Issue 4 2005
    Jörg Perner
    Arthropod abundance has been hypothesized to be correlated with plant diversity but the results of previous studies have been equivocal. In contrast, plant productivity, vegetation structure, abiotic site conditions, and the physical disturbance of habitats, are factors that interact with plant diversity, and that have been shown to influence arthropod abundance. We studied the combined effect of plant species diversity, productivity and site characteristics on arthropod abundance in 71 managed grasslands in central Germany using multivariate statistics. For each site we determined plant species cover, plant community biomass (productivity), macro- and micronutrients in the soil, and characterized the location of sites with respect to orographic parameters as well as the current and historic management regimes. Arthropods were sampled using a suction sampler and classified a priori into functional groups (FGs). We found that arthropod abundance was not correlated with plant species richness, effective diversity or Camargo's evenness, even when influences of environmental variables were taken into account. In contrast, plant community composition was highly correlated with arthropod abundances. Plant community productivity influenced arthropod abundance but explained only a small proportion of the variance. The abundances of the different arthropod FGs were influenced differentially by agricultural management, soil characteristics, vegetation structure and by interactions between different FGs of arthropods. Herbivores, carnivores and detritivores reacted differently to variation in environmental variables in a manner consistent with their feeding mode. Our results show that in natural grassland systems arthropod abundance is not a simple function of plant species richness, and they emphasize the important role of plant community composition for the abundance patterns of the arthropod assemblages. [source]


    Development of the herbivore Pieris rapae and its endoparasitoid Cotesia rubecula on crucifers of field edges

    JOURNAL OF APPLIED ENTOMOLOGY, Issue 9-10 2006
    J. A. Harvey
    Abstract:, Several studies have reported that flowering herbs, which grow naturally or are sown adjacent to agricultural fields, may be an important source of nutrients for natural enemies. Many parasitoids readily feed on plant exudates such as floral nectar, which contain different types of sugars that enable the insects to optimize their longevity, mobility and reproductive success. However, leaf tissues of plants grown in the margins of agricultural fields may also provide food for immature stages of insect herbivores, such as caterpillars, that are in turn attacked by parasitoids. Herbivores and their parasitoids may later disperse into the crop, so the nutritional quality of surrounding plants, as this affects herbivore and parasitoid fitness, may also influence the success of biological control programmes, especially later in the season. Here, we compare the suitability of three species of cruciferous plants (Brassicaceae) on the development of Pieris rapae L. (Lep., Pieridae) and its solitary endoparasitoid, Cotesia rubecula Marshall (Hym., Bracondiae). Insects were reared on a feral population of cabbage, Brassica oleracea, on radish Raphanus sativus, which is widely sown in agricultural margins, and on hedge mustard, Sisymbrium officinale, a wild crucifer which often grows in medium to large stands along road verges and field edges. Development time in both the herbivore and parasitoid were extended on R. sativus, compared with the other two species, whereas C. rubecula completed its development most rapidly on B. oleracea. Moreover, adult butterflies and parasitoids were significantly smaller when reared on R. sativus plants. Our results reveal that differences in the quality of plants growing adjacent to agricultural fields can affect the development of key herbivores and their parasitoids. This should be borne in mind when establishing criteria for the selection of floral biodiversity. [source]


    Herbivores and pathogens on willow: do they affect each other?

    AGRICULTURAL AND FOREST ENTOMOLOGY, Issue 4 2003
    Matthias Simon
    Abstract 1,Willows often need to cope with attack by both rust fungi and herbivores. We studied whether rust infection on willow affects the herbivore, and vice versa, whether herbivore feeding affects the fungal infection. The system investigated by laboratory bioassays and greenhouse experiments consisted of the willow hybrid Salix × cuspidata, the rust Melampsora allii-fragilis and the willow leaf beetle Plagiodera versicolora. Effects were studied both on a local scale (rust infection and feeding on the same leaf) and systemically (rust infection and feeding on different, but adjacent leaves). 2,Rust infection was not affected by herbivore feeding on a local scale. Systemically, however, the willow's susceptibility towards rust infection was increased by herbivore feeding, as indicated by a higher number of rust sori on leaves adjacent to feeding-damaged leaves. The herbivore's performance was detrimentally affected by rust infection: increase of mortality (systemically), decrease of larval weight (locally and systemically) and prolonging of developmental time (locally and systemically). 3,Previous rust infection enhanced systemically the willow's susceptibility towards subsequent fungal infection. Previous herbivore feeding on the willow had no effects on the herbivore's developmental time and mortality. However, feeding upon previously feeding-damaged willow leaves significantly reduced larval weight. [source]


    Global Change Effects on Plant Chemical Defenses against Insect Herbivores

    JOURNAL OF INTEGRATIVE PLANT BIOLOGY, Issue 11 2008
    M. Gabriela Bidart-Bouzat
    Abstract This review focuses on individual effects of major global change factors, such as elevated CO2, O3, UV light and temperature, on plant secondary chemistry. These secondary metabolites are well-known for their role in plant defense against insect herbivory. Global change effects on secondary chemicals appear to be plant species-specific and dependent on the chemical type. Even though plant chemical responses induced by these factors are highly variable, there seems to be some specificity in the response to different environmental stressors. For example, even though the production of phenolic compounds is enhanced by both elevated CO2 and UV light levels, the latter appears to primarily increase the concentrations of flavonoids. Likewise, specific phenolic metabolites seem to be induced by O3 but not by other factors, and an increase in volatile organic compounds has been particularly detected under elevated temperature. More information is needed regarding how global change factors influence inducibility of plant chemical defenses as well as how their indirect and direct effects impact insect performance and behavior, herbivory rates and pathogen attack. This knowledge is crucial to better understand how plants and their associated natural enemies will be affected in future changing environments. [source]


    The significance of small herbivores in structuring annual grassland

    JOURNAL OF VEGETATION SCIENCE, Issue 2 2007
    Halton A. Peters
    Abstract Question: Herbivores can play a fundamental role in regulating the composition and structure of terrestrial plant communities. Relatively inconspicuous but nevertheless ubiquitous gastropods and small mammals are usually considered to influence grassland communities through distinct modes. 1. Do terrestrial gastropods and small mammals, either alone or in combination, influence plant community composition of an intact annual grassland? 2. Do these herbivores influence the plant size structure of the dominant grass Avena? Location: Jasper Ridge Biological Preserve (37°24' N, 122° 13' W, elevation 150 m) in northern California. Methods: Animal exclosures were used to examine the single and combined influences of these herbivores on annual grassland production, community composition, and plant size structure during the growing season of an intact annual grassland. Results: The removal and exclusion of the herbivores increased the prevalence of grasses relative to legumes and non-legume forbs; increased total production of above-ground plant biomass; and increased mean plant size and exacerbated size hierarchies in populations of Avena. The effect of both gastropods and small mammals, alone and in combination, was characterized by temporal oscillations in the relative dominance of grasses in plots with vs. without herbivores. Conclusions: Both groups of herbivores are important controllers of California annual grassland that exert similar influences on production and composition. While other factors appear to determine the absolute number of individuals in this plant community, selective consumption of grasses by gastropods and small mammals partially offsets the competitive advantages associated with their early germination. [source]


    Cross-site comparison of herbivore impact on nitrogen availability in grasslands: the role of plant nitrogen concentration

    OIKOS, Issue 11 2009
    E. S. Bakker
    Herbivores may influence the nitrogen (N) recycling rates and consequently increase or decrease the productivity of grasslands. Plant N concentration emerged as a critical parameter to explain herbivore effects from several conceptual models, which predict that herbivores decrease soil N availability when plant N concentration is low whereas they increase it when plant N concentration is high (Hobbs 1996, Ritchie et al. 1998, Pastor et al. 2006). However, a broader cross-site comparison among published studies to test these predictions is hampered by the different methodologies used to measure soil N availability or a proxy thereof, and a lack of measurements of plant N concentration. Therefore it remains unclear whether these model predictions are generally valid across a range of grasslands. We tested whether there is a relationship between plant N concentration and herbivore impact on soil N availability (measured with resin bags) with a study of replicate 6,8,year old exclosures (with an unfenced control) of vertebrate herbivores (>1,kg) established at each of seven grassland sites in North America and Europe. Contrary to model predictions, we found a negative relationship between the effect of herbivores on resin bag soil N availability and plant N concentration. Our study confirms the importance of plant N concentration as a predictor of herbivore effect on soil N availability across grasslands, but contradicts the models. A possible explanation may be that the results represent a transient situation as the exclosures were relatively young whereas the models may refer to an equilibrium state. Simultaneous measurements of both plant N concentration and herbivore effect on soil N availability from more grassland sites, preferably with contrasting plant N concentrations and including exclosures of different ages, should resolve the contrast between model predictions and our field measurements. [source]


    Herbivores, but not other insects, are scarce on alien plants

    AUSTRAL ECOLOGY, Issue 5 2008
    ERBAN PROCHE
    Abstract Understanding how the landscape-scale replacement of indigenous plants with alien plants influences ecosystem structure and functioning is critical in a world characterized by increasing biotic homogenization. An important step in this process is to assess the impact on invertebrate communities. Here we analyse insect species richness and abundance in sweep collections from indigenous and alien (Australasian) woody plant species in South Africa's Western Cape. We use phylogenetically relevant comparisons and compare one indigenous with three Australasian alien trees within each of Fabaceae: Mimosoideae, Myrtaceae, and Proteaceae: Grevilleoideae. Although some of the alien species analysed had remarkably high abundances of herbivores, even when intentionally introduced biological control agents are discounted, overall, herbivorous insect assemblages from alien plants were slightly less abundant and less diverse compared with those from indigenous plants , in accordance with predictions from the enemy release hypothesis. However, there were no clear differences in other insect feeding guilds. We conclude that insect assemblages from alien plants are generally quite diverse, and significant differences between these and assemblages from indigenous plants are only evident for herbivorous insects. [source]


    Seasonality of a Diverse Beetle Assemblage Inhabiting Lowland Tropical Rain Forest in Australia

    BIOTROPICA, Issue 3 2009
    Peter S. Grimbacher
    ABSTRACT One of the least understood aspects of insect diversity in tropical rain forests is the temporal structuring, or seasonality, of communities. We collected 29,986 beetles of 1473 species over a 4-yr period (45 monthly samples), with the aim to document the temporal dynamics of a trophically diverse beetle assemblage from lowland tropical rain forest at Cape Tribulation, Australia. Malaise and flight interception traps were used to sample adult beetles at five locations at both ground and canopy levels. Beetles were caught throughout the year, but individual species were patchy in their temporal distribution, with the 124 more abundant species on average being present only 56 percent of the time. Climatic variables (precipitation, temperature, and solar radiation) were poorly correlated with adult beetle abundance, possibly because: (1) seasonality of total beetle abundance was slight; (2) the peak activity period (September,November) did not correspond to any climatic maxima or minima; or (3) responses were nonlinear owing to the existence of thresholds or developmental time-lags. Our results do not concur with the majority of tropical insect seasonality studies suggesting a wet season peak of insect activity, perhaps because there is no uniform pattern of insect seasonally for the humid tropics. Herbivores showed low seasonality and individual species' peaks were less temporally aggregated compared to nonherbivores. Canopy-caught and larger beetles (> 5 mm) showed greater seasonality and peaked later in the year compared to smaller or ground-caught beetles. Thus seasonality of adult beetles varied according to the traits of feeding ecology, body size, and habitat strata. [source]


    Selection of preadapted populations allowed Senecio inaequidens to invade Central Europe

    DIVERSITY AND DISTRIBUTIONS, Issue 4 2008
    Oliver Bossdorf
    ABSTRACT Invasive species often evolve rapidly in response to the novel biotic and abiotic conditions in their introduced range. Such adaptive evolutionary changes might play an important role in the success of some invasive species. Here, we investigated whether introduced European populations of the South African ragwort Senecio inaequidens (Asteraceae) have genetically diverged from native populations. We carried out a greenhouse experiment where 12 South African and 11 European populations were for several months grown at two levels of nutrient availability, as well as in the presence or absence of a generalist insect herbivore. We found that, in contrast to a current hypothesis, plants from introduced populations had a significantly lower reproductive output, but higher allocation to root biomass, and they were more tolerant to insect herbivory. Moreover, introduced populations were less genetically variable, but displayed greater plasticity in response to fertilization. Finally, introduced populations were phenotypically most similar to a subset of native populations from mountainous regions in southern Africa. Taking into account the species' likely history of introduction, our data support the idea that the invasion success of Senecio inaequidens in Central Europe is based on selective introduction of specific preadapted and plastic genotypes rather than on adaptive evolution in the introduced range. [source]


    Being a generalist herbivore in a diverse world: how do diets from different grasslands influence food plant selection and fitness of the grasshopper Chorthippus parallelus?

    ECOLOGICAL ENTOMOLOGY, Issue 2 2010
    ALEXANDRA FRANZKE
    1. Generalist insect herbivores occupy a variety of habitats that differ in food plant composition. Dietary mixing has been proposed as a possibility for generalists to overcome nutritional deficiencies of single plant species, but only a few studies have investigated herbivore feeding and fitness for diets that resemble natural scenarios. We studied feeding behaviour, survival, and reproduction of the generalist grasshopper Chorthippus parallelus raised on food plants of four typical habitats. 2. Grasshopper diet consisted of grasses (92.5%), legumes (6.7%) and, in small quantities, other forbs (0.8%). Diet selection differed between the four food plant mixtures, and depended on grasshopper sex and developmental stage. There was no correlation between the relative abundance of plant species in the field and the fraction of these species in the grasshopper diet. 3. Grasshoppers survived on average for 40.4 ± 1.0 days before maturity, grew 106.8 mg until maturity moult, and females laid 4.1 ± 0.4 egg pods, each of which contained 8.5 ± 0.4 eggs. However, despite the differences in feeding behaviour, grasshopper fitness was the same in all of the four food plant mixtures. While the digestibility of ingested food was similar in the four different treatments, indices indicated differences in the conversion efficiency to body mass. 4. Our results show that C. parallelus is a plastic feeder with no fixed preferences in diet composition. The results emphasise that generalist herbivores can counteract putative quality deficiencies of single food plants by selective dietary mixing. [source]


    Resource regulation by a twig-girdling beetle has implications for desertification

    ECOLOGICAL ENTOMOLOGY, Issue 2 2008
    B. D. DUVAL
    Abstract 1.,Resource regulation by insects is the phenomenon by which herbivory enhances resources for the progeny of the herbivore. This report provides an example of resource regulation with implications for desertification in the Chihuahuan Desert of North America. 2.,Female Oncideres rhodosticta beetles chew girdles around mesquite (Prosopis glandulosa) stems before ovipositing in those stems. The mesquite plants respond by producing compensatory stems below the girdle. Mesquite volume was significantly correlated with the total number of beetle girdles across a suite of low shrub density grassland and high shrub density dune sites, and plants in dune sites had more old and new girdles than mesquite in grasslands. 3.,Smaller, younger shrubs in grassland responded more vigorously to girdling than did larger, older shrubs in dune landscapes. Stems on shrubs within grassland produced significantly more and longer compensatory stems per girdle than stems on shrubs in dunes. Soil capture by individual plants positively correlated with stem density, and stem density is increasing in the younger plants as a response to beetle damage. 4.,This study suggests that the interaction between O. rhodosticta and mesquite is an example of resource regulation that increases the stem density and soil capture ability of mesquite. Because the conversion of productive grasslands to mesquite dune landscapes is one of the most important drivers of desertification in the Chihuahuan Desert, feedbacks between organisms that promote an increase in the size and soil capture ability of mesquite may exacerbate desertification. [source]


    Bottom-up, top-down, and within-trophic level pressures on a cactus-feeding insect

    ECOLOGICAL ENTOMOLOGY, Issue 2 2008
    TOM E. X. MILLER
    Abstract 1.,The relative importance of host-plants and predators in the population dynamics of herbivorous insects, and the frequency and intensity of inter-specific competition among herbivores, have both been intensively studied and debated. The joint effects of bottom-up, top-down, and within-trophic level interactions, however, have rarely been integrated in a single system. 2.,I studied the dynamics of the cactus bug (Narnia pallidicornis), a specialist feeder on tree cholla cactus (Opuntia imbricata), in response to variable host-plant quality, spider predation, and interactions with cactus-feeding beetles (Moneilema appressum). Previous work suggests that cactus reproductive effort (the proportion of meristems allocated to reproduction) is an important component of host-plant quality for Narnia. I conducted a 2-year field experiment to test the hypotheses that Narnia abundance is positively related to host-plant reproductive effort, and that interactions with predators and putative competitors alter the shape of this relationship. 3.,I found strong support for the first prediction (positive Narnia,plant quality relationship) in both years, but neither predator removal nor beetle exclusion had detectable effects on this relationship in either year. I conclude that the dynamics of this insect herbivore are driven predominantly from the bottom-up, and that available data from this work and from previous studies are too variable to permit broad generalisations for the combined effects of host-plants, predation, and competition on herbivore dynamics. [source]


    Effects of nitrogen deposition on the interaction between an aphid and its host plant

    ECOLOGICAL ENTOMOLOGY, Issue 1 2008
    CARALYN B. ZEHNDER
    Abstract 1.,Anthropogenic increases in nitrogen deposition are impacting terrestrial ecosystems worldwide. While some of the direct ecosystem-level effects of nitrogen deposition are understood, the effects of nitrogen deposition on plant,insect interactions and on herbivore population dynamics have received less attention. 2.,Nitrogen deposition will potentially influence both plant resource availability and herbivore population growth. If increases in herbivore population growth outstrip increases in resource availability, then increases in the strength of density dependence expressed within the herbivore population would be predicted. Alternatively, if plant resources respond more vigorously to nitrogen deposition than do herbivore populations, a decline in the strength of density dependence would be expected. No change in the strength of density dependence acting upon the herbivore population would suggest equivalent responses by herbivores and plants. 3.,A density manipulation experiment was performed to examine the effect of nitrogen deposition on the interaction between a host plant, Asclepias tuberosa, and its herbivore, Aphis nerii. Aphid maximum per capita growth rate (Rmax), carrying capacity (K), and the strength of density dependence were measured under three nitrogen deposition treatments. The effect of nitrogen deposition on the relationship among these three measures of insect population dynamics was explored. 4.,Simulated nitrogen deposition increased aphid per capita population growth, plant foliar nitrogen concentrations, and plant biomass. Nitrogen deposition caused Rmax and K to increase proportionally, leading to no overall change in the strength of density dependence. In this system, potential changes in the negative feedback processes operating on herbivore populations following nitrogen deposition appear to be buffered by concomitant changes in resource availability. [source]


    Consequences for a host,parasitoid interaction of host-plant aggregation, isolation, and phenology

    ECOLOGICAL ENTOMOLOGY, Issue 4 2007
    ADAM J. VANBERGEN
    Abstract 1.,Spatial habitat structure can influence the likelihood of patch colonisation by dispersing individuals, and this likelihood may differ according to trophic position, potentially leading to a refuge from parasitism for hosts. 2.,Whether habitat patch size, isolation, and host-plant heterogeneity differentially affected host and parasitoid abundance, and parasitism rates was tested using a tri-trophic thistle,herbivore,parasitoid system. 3.,Cirsium palustre thistles (n= 240) were transplanted in 24 blocks replicated in two sites, creating a range of habitat patch sizes at increasing distance from a pre-existing source population. Plant architecture and phenological stage were measured for each plant and the numbers of the herbivore Tephritis conura and parasitoid Pteromalus elevatus recorded. 4.,Mean herbivore numbers per plant increased with host-plant density per patch, but parasitoid numbers and parasitism rates were unaffected. Patch distance from the source population did not influence insect abundance or parasitism rates. Parasitoid abundance was positively correlated with host insect number, and parasitism rates were negatively density dependent. Host-plant phenological stage was positively correlated with herbivore and parasitoid abundance, and parasitism rates at both patch and host-plant scales. 5.,The differential response between herbivore and parasitoid to host-plant density did not lead to a spatial refuge but may have contributed to the observed parasitism rates being negatively density dependent. Heterogeneity in patch quality, mediated by variation in host-plant phenology, was more important than spatial habitat structure for both the herbivore and parasitoid populations, and for parasitism rates. [source]


    Can intra-specific genetic variation in arbuscular mycorrhizal fungi (Glomus etunicatum) affect a mesophyll-feeding herbivore (Tupiocoris notatus Distant)?

    ECOLOGICAL ENTOMOLOGY, Issue 4 2007
    STUART C. WOOLEY
    Abstract 1.,Arbuscular mycorrhizal fungal (AMF) infection can have negative, positive or neutral effects on insect herbivore populations, but patterns are difficult to predict. 2.,Intra-specific genetic variation in nutrient uptake ability between fungal isolates may also have indirect effects on insect herbivores due to changes in plant quality. In preliminary studies mirid (Tupiocoris notatus) populations were significantly reduced on tobacco (Nicotiana rustica) colonised by AMF but it was unknown if same-species fungal isolates differed in their effect. 3.,An experiment was performed as a first test of the effect of intra-specific genetic variation in the mycorrhizal fungus Glomus etunicatum on mirid nymphal population structure, dynamics, and growth rate. 4.,Mirid nymphal populations were lower on mycorrhizal fungal-infected plants. Population size, however, did not differ between the mycorrhizal isolates. While no statistical difference in population between isolates was found, one isolate consistently had 1.7,2.4 times lower mirid populations compared with the controls, indicating that the magnitude of effect is different between mycorrhizal isolates. 5.,The significantly negative effect of AMF on mirid populations likely resulted from AMF-induced changes in plant quality (e.g. increased defence). This study lends further support to recent demonstrations that below-ground symbionts significantly influence above-ground processes. In addition, mycorrhizal fungi can affect insect population structure, which may have consequences for future herbivory. [source]


    Bacteria in oral secretions of an endophytic insect inhibit antagonistic fungi

    ECOLOGICAL ENTOMOLOGY, Issue 6 2006
    YASMIN J. CARDOZA
    Abstract 1.,Colonisation of host trees by an endophytic herbivore, the spruce beetle, Dendroctonus rufipennis, is accompanied by invasion of its galleries by a number of fungal species. Four of these associated species were identified as Leptographium abietinum, Aspergillus fumigatus, Aspergillus nomius, and Trichoderma harzianum. 2.,Trichoderma and Aspergillus significantly reduced spruce beetle survival and reproduction in controlled assays. 3.,A previously undescribed behaviour was observed, in which spruce beetle adults exuded oral secretions, especially within fungus-pervaded galleries. 4.,These oral secretions inhibited the growth of fungi except A. nomius, and disrupted the morphology of the latter. Administration of these secretions indicated a dose-dependent inhibitory effect. 5.,Oral secretions cultured on microbiological media yielded substantial bacterial growth. 6.,Filter-sterilised secretions failed to inhibit fungal growth, evidence that the bacteria are responsible for the antifungal activity. 7.,Nine bacterial isolates belonging to the Actinobacteria, Firmicutes, Gammaproteobacteria, and Betaproteobacteria taxa were obtained from the secretions. 8.,Bacterial isolates showed species-specific inhibitory activity against the four fungi antagonistic to spruce beetle. The bacterium with the strongest fungal inhibition activity was the actinomycete Micrococcus luteus. 9.,The production of bark beetle secretions containing bacteria that inhibit fungal growth is a novel finding. This suggests an additional level of complexity to ecological associations among bark beetles, conifers, and microorganisms, and an important adaptation for colonising subcortical tissue. [source]


    Tritrophic interactions and trade-offs in herbivore fecundity on hybridising host plants

    ECOLOGICAL ENTOMOLOGY, Issue 3 2004
    Maria V. Cattell
    Abstract., 1. Interspecific plant hybridisation can have important evolutionary consequences for hybridising plants and for the organisms that they interact with on multiple trophic levels. In this study the effects of plant hybridisation on the abundance of herbivores and on the levels of herbivore parasitism were investigated. 2. Borrichia frutescens, B. arborescens, and their hybrid (B. × cubana) were censused for Asphondylia borrichiae galls and Pissonotus quadripustulatus plant hoppers in the Florida Keys. Levels of egg parasitism were determined by dissecting parental and hybrid stems and galls for herbivore and parasite eggs and larvae. Stem toughness and gall size are plant-mediated modes of protection from parasitism and these were also measured. For gall midges, fly size was measured as an estimate of fecundity. 3. Field censuses indicated that herbivore abundances varied on hybrid hosts relative to parent plant species and that the different herbivore species exhibited different patterns of abundance. Asphondylia borrichiae gall numbers followed the additive pattern of abundance while P. quadripustulatus numbers most closely resembled the dominance pattern. 4. Parasitism of P. quadripustulatus eggs was high on B. frutescens and the hybrids, and low on B. arborescens, which also had significantly tougher stems. Asphondylia borrichiae suffered the highest levels of parasitism on B. frutescens, the host plant which produced the smallest galls. On B. arborescens, which produced the largest galls, levels of A. borrichiae parasitism were lowest. Both parasitism and gall size were intermediate on the hybrid plants. Galls on B. arborescens and hybrid plants produced significantly smaller flies then those from B. frutescens suggesting that, when selecting hosts from among parent species and hybrids, gall flies may face a trade-off between escape from natural enemies and maximising fecundity. [source]


    Does aggregation benefit bark beetles by diluting predation?

    ECOLOGICAL ENTOMOLOGY, Issue 2 2004
    Links between a group-colonisation strategy, the absence of emergent multiple predator effects
    Abstract., 1. Aggregation in bark beetles (Coleoptera: Scolytidae) aids in mate attraction and resource procurement when colonising well-defended plants; however, some species colonise primarily poorly defended plants, and intraspecific competition increases mortality. The hypothesis that decreased risk of predation was a potential benefit to aggregation in such circumstances was tested, using the pine engraver, Ips pini (Say) and its two major predators Thanasimus dubius (F.) (Coleoptera: Cleridae) and Platysoma cylindrica (Paykull) (Coleoptera: Histeridae). Both single- and multiple-predator effects, across a range of prey densities, were tested. 2. Both male and female colonisation events increased with herbivore density, in an asymptotic fashion. 3. Predators decreased the number of colonisers in a density-dependent manner, consistent with a type II functional response. 4. The proportional impact of predators decreased with increased herbivore colonisation densities. These findings indicate that predator dilution may be a viable benefit to aggregation. 5. Total emergence of the herbivore also increased with density, although the net replacement rate during one generation was independent of initial arrival density. This was likely due to larval predation, which negates potential relationships between per capita reproductive success and establishment density. 6. Each predator species decreased I. pini's net replacement rate by approximately 42%, and their combined effect was approximately 70%. 7. Overall, these predators modified their prey's establishment and adult mortality relationships in additive manners. This is somewhat surprising, given the potential for emergent effects due to interactions between multiple predators foraging within a common habitat. The persistence of additivity, rather than risk reduction or enhancement to the prey, may increase the predator-swamping benefit to aggregation for this herbivore. 8. The effects of these predators are substitutable, and likely exert equivalent selective pressures to mask signals at the whole-plant level. [source]


    Host shifting by Operophtera brumata into novel environments leads to population differentiation in life-history traits

    ECOLOGICAL ENTOMOLOGY, Issue 5 2003
    Adam J. Vanbergen
    Abstract., 1. Operophtera brumata L. (Lepidoptera: Geometridae), a polyphagous herbivore usually associated with deciduous trees such as oak Quercus robur L., has expanded its host range to include the evergreen species heather Calluna vulgaris (L.) Hull and, most recently, Sitka spruce Picea sitchensis (Bong.) Carrière. 2. Phenology, morphology, and survival of O. brumata were measured at several life-history stages in populations from the three different host plant communities sampled from a range of geographical locations. The data were used to test for population differences, reflecting the marked differences in host-plant secondary chemistry, growth form, and site factors such as climate. The hypothesis that spruce-feeding populations originated from populations feeding on moorland, commonly sites of coniferous afforestation, was also tested. 3. Altitude, not host plant species, was the major influence on the timing of adult emergence. An effect of insect population independent of altitude was found, implying that additional unidentified factors contribute to this phenological variation. Larval survival and adult size varied between populations reared on different host plant species. Survival of larvae was affected negatively when reared on the novel host plant, Sitka spruce, versus the natal plant (oak or heather) but oak and heather-sourced insects did not differ in survivorship on Sitka spruce. 4. Host range extension into novel environments has resulted in population differentiation to the local climate, demonstrating that host shifts pose challenges to the herbivore population greater than those offered by the host plant alone. The hypothesis that Sitka spruce feeding populations have arisen predominantly from moorland feeding populations was not supported. [source]


    The role of resources and natural enemies in determining the distribution of an insect herbivore population

    ECOLOGICAL ENTOMOLOGY, Issue 2 2001
    Iain S. Williams
    Summary 1. Both resources and natural enemies can influence the distribution of a herbivore. The ideal free distribution predicts that herbivores distribute themselves to optimise utilisation of resources. There is also evidence of herbivores seeking out refuges that reduce natural enemy attack (enemy-free space). Which of these theories predominates in a thistle,tephritid Terellia ruficauda (Diptera: Tephritidae),parasitoid interaction is examined. 2. The plant, Cirsium palustre, had a contagious distribution approximated by the negative binomial distribution. Terellia ruficauda foraged preferentially and oviposited on isolated plants although its larvae gained neither nutritional benefit nor reduced natural enemy pressure from such behaviour. 3. Parasitoids of T. ruficauda foraged and oviposited more frequently on isolated than on crowded T. ruficauda, resulting in inverse density-dependent parasitoid attack at all spatial scales examined. Neither the herbivore nor natural enemies distributed themselves according to the predictions of the ideal free distribution and the herbivore did not oviposit to reduce natural enemy attack. 4. Extrapolating from the theoretical predictions of the ideal free distribution and enemy-free space to the field requires considerable caution. Terellia ruficauda and its parasitoids appear to select their oviposition sites to spread the risk of losses through factors (e.g. mammal herbivory) that may damage dense clusters of C. palustre. [source]


    Importance of species interactions to community heritability: a genetic basis to trophic-level interactions

    ECOLOGY LETTERS, Issue 1 2006
    Joseph K. Bailey
    Abstract Recent community genetics studies have shown that specific genotypes of a host plant support distinct arthropod communities. Building upon these findings, we examined the hypothesis that a trophic community consisting of cottonwood trees, a galling herbivore and avian predators could also be related to the genetics of the host tree. We found genetic correlations among phytochemistry of individual tree genotypes, the density of a galling herbivore, and the intensity of avian predation on these herbivores. We detected significant broad-sense heritability of these interactions that range from H = 0.70 to 0.83. The genetic basis of these interactions tended to increase across trophic levels suggesting that small genetic changes in the cottonwood phenotype could have major consequences at higher trophic levels affecting species interactions and energy flow. These findings show a heritable basis to trophic-level interactions indicating that there is a significant genetic basis to community composition and energy flow that is predictable by plant genotype. Our data clearly link plant genetics to patterns of avian foraging and show that species interactions are important components of community heritability and ecosystem processes. Overall, these data support the hypothesis that evolution of plant traits can alter trophic-level interactions and community composition. [source]


    Transfer of endophyte-origin defensive alkaloids from a grass to a hemiparasitic plant

    ECOLOGY LETTERS, Issue 12 2005
    Päivi Lehtonen
    Abstract Plants growing in natural environments experience myriad interactions with a diverse assemblage of pathogens, parasites and mutualists. Many of these interactions involve symbiotic bacteria and fungi, but they also include macroparasitic plants. In this study, we investigated the interactions among a host grass (Lolium pratense, ex., Festuca pratensis), its symbiotic endophytic fungus (Neotyphodium uncinatum), a root hemiparasitic plant (Rhinanthus serotinus) of the host grass and a generalist herbivore (aphid Aulacorthum solani) of the hemiparasite. We demonstrate that the hemiparasitic plant acquires defending mycotoxins produced by the endophytic fungus living within their shared host grass. The uptake of defensive mycotoxins from the endophyte-infected host grass enhances the resistance of the hemiparasitic plant to the generalist aphid herbivore. Endophyte infection increases the performance of the hemiparasitic plant, but reduces the growth of the host grass. In other words, the mutualistic endophytic fungus becomes parasitic in the presence of the hemiparasitic plant. Our results suggest that the outcomes of grass,endophyte interactions are conditional on the complexity of community-level interactions; thus, the outcome of multispecies interactions may not be predictable from pair-wise combinations of species. [source]


    Biodiversity and biocontrol: emergent impacts of a multi-enemy assemblage on pest suppression and crop yield in an agroecosystem

    ECOLOGY LETTERS, Issue 9 2003
    Bradley J. Cardinale
    Abstract The suppression of agricultural pests has often been proposed as an important service of natural enemy diversity, but few experiments have tested this assertion. In this study we present empirical evidence that increasing the richness of a particular guild of natural enemies can reduce the density of a widespread group of herbivorous pests and, in turn, increase the yield of an economically important crop. We performed an experiment in large field enclosures where we manipulated the presence/absence of three of the most important natural enemies (the coccinellid beetle Harmonia axyridis, the damsel bug Nabis sp., and the parasitic wasp Aphidius ervi) of pea aphids (Acyrthosiphon pisum) that feed on alfalfa (Medicago sativa). When all three enemy species were together, the population density of the pea aphid was suppressed more than could be predicted from the summed impact of each enemy species alone. As crop yield was negatively related to pea aphid density, there was a concomitant non-additive increase in the production of alfalfa in enclosures containing the more diverse enemy guild. This trophic cascade appeared to be influenced by an indirect interaction involving a second herbivore inhabiting the system , the cowpea aphid, Aphis craccivora. Data suggest that high relative densities of cowpea aphids inhibited parasitism of pea aphids by the specialist parasitoid, A. ervi. Therefore, when natural enemies were together and densities of cowpea aphids were reduced by generalist predators, parasitism of pea aphids increased. This interaction modification is similar to other types of indirect interactions among enemy species (e.g. predator,predator facilitation) that can enhance the suppression of agricultural pests. Results of our study, and those of others performed in agroecosystems, complement the broader debate over how biodiversity influences ecosystem functioning by specifically focusing on systems that produce goods of immediate relevance to human society. [source]


    A cross-ecosystem comparison of the strength of trophic cascades

    ECOLOGY LETTERS, Issue 6 2002
    Jonathan B. Shurin
    Abstract Although trophic cascades (indirect effects of predators on plants via herbivores) occur in a wide variety of food webs, the magnitudes of their effects are often quite variable. We compared the responses of herbivore and plant communities to predator manipulations in 102 field experiments in six different ecosystems: lentic (lake and pond), marine, and stream benthos, lentic and marine plankton, and terrestrial (grasslands and agricultural fields). Predator effects varied considerably among systems and were strongest in lentic and marine benthos and weakest in marine plankton and terrestrial food webs. Predator effects on herbivores were generally larger and more variable than on plants, suggesting that cascades often become attenuated at the plant,herbivore interface. Top-down control of plant biomass was stronger in water than on land; however, the differences among the five aquatic food webs were as great as those between wet and dry systems. [source]


    Herbivore and pathogen damage on grassland and woodland plants: a test of the herbivore uncertainty principle

    ECOLOGY LETTERS, Issue 4 2002
    Stefan A. Schnitzer
    Researchers can alter the behaviour and ecology of their study organisms by conducting such seemingly benign activities as non-destructive measurements and observations. In plant communities, researcher visitation and measurement of plants may increase herbivore damage in some plant species while decreasing it in others. Simply measuring plants could change their competitive ability by altering the amount of herbivore damage that they suffer. Currently, however, there is only limited empirical evidence to support this `herbivore uncertainty principle' (HUP). We tested the HUP by quantifying the amount of herbivore and pathogen damage in 13 plant species (> 1400 individuals) at four different visitation intensities at Cedar Creek Natural History Area, Minnesota, USA. Altogether, we found very little evidence to support the HUP at any intensity of visitation. Researcher visitation did not alter overall plant herbivore damage or survival and we did not detect a significant visitation effect in any of the 13 species. Pathogen damage also did not significantly vary among visitation treatments, although there was some evidence that high visitation caused slightly higher pathogen damage. Based on our results, we question whether this phenomenon should be considered a `principle' of plant ecology. [source]


    Lymantria dispar herbivory induces rapid changes in carbon transport and partitioning in Populus nigra

    ENTOMOLOGIA EXPERIMENTALIS ET APPLICATA, Issue 1 2008
    Benjamin A. Babst
    Abstract We tested for rapid changes in photosynthate transport and partitioning in response to Lymantria dispar (L.) (Lepidoptera: Lymantriidae) (gypsy moth) herbivory in Populus nigra L. (Salicaceae). Transport and partitioning of [11C]-photosynthate from young mature leaves were measured in vivo before and 18 h after leaf chewing by gypsy moth larvae, which were caged on three older leaves. Following herbivory, there was an increase in export speed of recently fixed carbon from younger mature leaves. The increased export speed was due to a quicker transit time of 11C through the leaf, rather than a change in transport speed through the phloem. Additionally, basipetal partitioning of [11C]-photosynthate was increased following herbivory. Neither of these changes was observed in control plants. This enhancement of export occurs even though herbivores are well known to induce increases in carbon allocation to secondary metabolites within leaves. Our results demonstrate that the use of non-destructive imaging of 11C tracer is a powerful tool for examining plant responses to herbivory. Although the mechanisms underlying the rapid increase in carbon flux to stems and roots remain to be elucidated, our results raise the possibility of a coordinated whole plant response to herbivory. Thus, even when the herbivore specializes on only one plant tissue type, a whole plant approach may be key to understanding how plants respond to herbivory. [source]