Home About us Contact | |||
Herbicide Application (herbicide + application)
Selected AbstractsEffects of transgenic glufosinate-tolerant oilseed rape (Brassica napus) and the associated herbicide application on eubacterial and Pseudomonas communities in the rhizosphereFEMS MICROBIOLOGY ECOLOGY, Issue 3 2002Stephen Gyamfi Abstract A containment experiment was carried out in order to evaluate possible shifts in eubacterial and Pseudomonas rhizosphere community structures due to the release of genetically modified Basta-tolerant oilseed rape and the associated herbicide application. Treatments included cultivation of the transgenic plant as well as of the wild-type cultivar in combination with mechanical removal of weeds and the application of the herbicides Basta (active ingredient: glufosinate) and Butisan S (active ingredient: metazachlor). Rhizosphere soil was sampled from early and late flowering plants as well as from senescent plants. A culture-independent approach was chosen to characterize microbial communities based on denaturing gradient gel electrophoresis of 16S rRNA gene fragments amplified from rhizosphere DNA using eubacterial and Pseudomonas -specific PCR primers. Dominant pseudomonads in the rhizosphere were analyzed by sequence analysis. Whole community and Pseudomonas electrophoresis fingerprints revealed slightly altered microbial communities in the rhizosphere of transgenic plants; however, effects were minor as compared to the plant developmental stage-dependent shifts. Both herbicides caused transient changes in the eubacterial and Pseudomonas population structure, whereas differences due to the genetic modification were still detected at the senescent growth stage. The observed differences between transgenic and wild-type lines were most likely due to unintentionally modified plant characteristics such as altered root exudation. [source] Effects of temperature and fertilization on nitrogen cycling and community composition of an urban lawnGLOBAL CHANGE BIOLOGY, Issue 9 2008NEETA S. BIJOOR Abstract We examined the influence of temperature and management practices on the nitrogen (N) cycling of turfgrass, the largest irrigated crop in the United States. We measured nitrous oxide (N2O) fluxes, and plant and soil N content and isotopic composition with a manipulative experiment of temperature and fertilizer application. Infrared lamps were used to increase surface temperature by 3.5±1.3 °C on average and control and heated plots were split into high and low fertilizer treatments. The N2O fluxes increased following fertilizer application and were also directly related to soil moisture. There was a positive effect of warming on N2O fluxes. Soils in the heated plots were enriched in nitrogen isotope ratio (,15N) relative to control plots, consistent with greater gaseous losses of N. For all treatments, C4 plant C/N ratio was negatively correlated with plant ,15N, suggesting that low leaf N was associated with the use of isotopically depleted N sources such as mineralized organic matter. A significant and unexpected result was a large, rapid increase in the proportion of C4 plants in the heated plots relative to control plots, as measured by the carbon isotope ratio (,13C) of total harvested aboveground biomass. The C4 plant biomass was dominated by crabgrass, a common weed in C3 fescue lawns. Our results suggest that an increase in temperature caused by climate change as well as the urban heat island effect may result in increases in N2O emissions from fertilized urban lawns. In addition, warming may exacerbate weed invasions, which may require more intensive management, e.g. herbicide application, to manage species composition. [source] The role of altered acetyl-CoA carboxylase in conferring resistance to fenoxaprop-P-ethyl in Chinese sprangletop (Leptochloa chinensis (L.) Nees)PEST MANAGEMENT SCIENCE (FORMERLY: PESTICIDE SCIENCE), Issue 11 2006Tosapon Pornprom Abstract From paddy field observations in 2002 and 2004, fenoxaprop-P-ethyl resistance in Chinese sprangletop (Leptochloa chinensis (L.) Nees) has been studied using information collected from 11 sites in the Saphan-Sung district of Bangkok, Thailand. The resistant Chinese sprangletop was found in nine rice fields, whereas the susceptible Chinese sprangletop was found in only two rice fields. In greenhouse experiments, both fenoxaprop-P-ethyl-resistant and susceptible Chinese sprangletop from the same location were investigated for 50% growth reduction based on phytotoxicity, plant height and fresh and dry weight. The resistant Chinese sprangletop showed apparent resistance at 14,21 days after herbicide application at a rate of 21.1,337.6 g AI ha,1. The resistance index of resistant Chinese sprangletop was 10,25 times higher than that of the susceptible Chinese sprangletop. In addition, Chinese sprangletop did not exhibit multiple resistance to oxadiazon, propanil and quinclorac. According to acetyl-CoA carboxylase (ACCase) assays, the level of ACCase specific activity in the resistant Chinese sprangletop was significantly higher than that in the susceptible Chinese sprangletop. Similarly, the ACCase activity of the resistant Chinese sprangletop was 10 times less sensitive to fenoxaprop-P-ethyl than that of the susceptible Chinese sprangletop, based on the I50 values. The present study of the mechanism responsible for resistance in the biotypes investigated indicated that there was a close association between the concentration,response at the whole-plant level and ACCase sensitivity to fenoxaprop-P-ethyl, and resistance to fenoxaprop-P-ethyl was conferred by a modified ACCase at the target site, as suggested by higher specific activity and less sensitivity to the herbicide. Copyright © 2006 Society of Chemical Industry [source] Effect of Hydrologic Restoration and Lonicera maackii Removal on Herbaceous Understory Vegetation in a Bottomland Hardwood ForestRESTORATION ECOLOGY, Issue 3 2008Rebecca M. Swab Abstract Amur honeysuckle (Lonicera maackii (Rupr.) Herder), a large deciduous shrub from China, has invaded many forests in eastern/central United States. The species was removed by cutting and herbicide application from a recently hydrologically restored section of a bottomland hardwood forest in central Ohio, and the response of understory plants, especially herbaceous species, was measured. Plots were established in uncleared and cleared sections, and percent cover of each herbaceous understory species was estimated monthly. One season after several years of Lonicera removal efforts, no significant association was discovered between percentage of Lonicera cover and total understory species abundance. There was, however, a direct correlation between elevation and honeysuckle abundance; L. maackii abundance was negatively associated with low elevations, likely due to hydrologic factors. Plant species diversity (H) and richness (s) increased with elevation but were not significantly different on plots with honeysuckle removal (H = 0.86 ± 0.08 vs. 0.78 ± 0.09 and s = 4.4 ± 0.19 vs. 4.2 ± 0.2 species/m2, respectively) despite the fact that understory light levels measured by densiometer were significantly higher (,= 0.003) in cleared versus uncleared sections. Native and invasive species were found in similar proportions in the two sections, and significant sprouting and regrowth of L. maackii were observed throughout the cleared section. Although the removal of L. maackii altered the characteristics of the plant species assemblage, the value of this management remains questionable in the years immediately following treatment. [source] Increasing the Effectiveness of Reed canary grass (Phalaris arundinacea L.) Control in Wet Meadow RestorationsRESTORATION ECOLOGY, Issue 3 2006Carrie Reinhardt Adams Abstract Restoration practices are often based on trial and error or anecdotal information because data from controlled experiments are not available. In wet meadow restorations of the upper Midwest United States, Reed canary grass (Phalaris arundinacea L.) is controlled with spring burning and spring glyphosate herbicide applications, but the relative effectiveness of either treatment with respect to P. arundinacea growth and life history has not been assessed. We designed a multiyear field experiment to evaluate effects of burning and herbicide application timings on P. arundinacea populations. Burning did not reduce P. arundinacea biomass but reduced the P. arundinacea seed bank, potentially limiting recolonization of P. arundinacea. Glyphosate applications in late August and late September were more effective than in mid-May (due to enhanced glyphosate translocation to rhizomes), such that two mid-May applications reduced P. arundinacea biomass to a level equivalent to that achieved by one late-season application. Phalaris. arundinacea recolonized rapidly from the seed bank and, in plots that received suboptimally timed (mid-May) herbicide, from rhizomes. Establishment of native species was very low, likely due to competition with recolonizing P. arundinacea. Unplanted species (from the seed bank and refugial populations) accounted for the majority of non- P. arundinacea biomass. Recolonization of other species was strongly limited by a threshold level of P. arundinacea biomass. Adequate site preparation (over multiple growing seasons) and aftercare (selective removal of P. arundinacea) will be the key to facilitating subsequent wet meadow vegetation establishment. This research provides an example of the importance of experimental evidence as the basis to improve the efficiency of restoration practices. [source] |