Home About us Contact | |||
Herb Species (herb + species)
Selected AbstractsEndemic species and ecosystem sensitivity to climate change in NamibiaGLOBAL CHANGE BIOLOGY, Issue 5 2006WILFRIED THUILLER Abstract We present a first assessment of the potential impacts of anthropogenic climate change on the endemic flora of Namibia, and on its vegetation structure and function, for a projected climate in ,2050 and ,2080. We used both niche-based models (NBM) to evaluate the sensitivity of 159 endemic species to climate change (of an original 1020 plant species modeled) and a dynamic global vegetation model (DGVM) to assess the impacts of climate change on vegetation structure and ecosystem functioning. Endemic species modeled by NBM are moderately sensitive to projected climate change. Fewer than 5% are predicted to experience complete range loss by 2080, although more than 47% of the species are expected to be vulnerable (range reduction >30%) by 2080 if they are assumed unable to migrate. Disaggregation of results by life-form showed distinct patterns. Endemic species of perennial herb, geophyte and tree life-formsare predicted to be negatively impacted in Namibia, whereas annual herb and succulent endemic species remain relatively stable by 2050 and 2080. Endemic annual herb species are even predicted to extend their range north-eastward into the tree and shrub savanna with migration, and tolerance of novel substrates. The current protected area network is predicted to meet its mandate by protecting most of the current endemicity in Namibia into the future. Vegetation simulated by DGVM is projected to experience a reduction in cover, net primary productivity and leaf area index throughout much of the country by 2050, with important implications for the faunal component of Namibia's ecosystems, and the agricultural sector. The plant functional type (PFT) composition of the major biomes may be substantially affected by climate change and rising atmospheric CO2, currently widespread deciduous broad leaved trees and C4 PFTs decline, with the C4 PFT particularly negatively affected by rising atmospheric CO2 impacts by ,2080 and deciduous broad leaved trees more likely directly impacted by drying and warming. The C3 PFT may increase in prominence in the northwestern quadrant of the country by ,2080 as CO2 concentrations increase. These results suggest that substantial changes in species diversity, vegetation structure and ecosystem functioning can be expected in Namibia with anticipated climate change, although endemic plant richness may persist in the topographically diverse central escarpment region. [source] Land-use legacies in a central Appalachian forest: differential response of trees and herbs to historic agricultural practicesAPPLIED VEGETATION SCIENCE, Issue 2 2010James M. Dyer Abstract Question: Are contemporary herb and tree patterns explained by historic land use practices? If so, are observed vegetation patterns associated with life-history characteristics, soil properties, or other environmental variables? Location: Southeastern Ohio, USA. Methods: Using archival records, currently forested sites were identified with distinct land use histories: cultivated, pasture (but not plowed), and reference sites which appear to have never been cleared. Trees were recorded by size and species on twenty 20 m × 20 m plots; percent cover was estimated for each herb species in nested 10 m × 10 m plots. Environmental characteristics were noted, and soil samples analysed for nutrient availability and organic matter. Nonmetric multidimensional scaling ordination was performed separately on both tree and herb datasets to graphically characterize community composition among plots. Life-history traits were investigated to explain observed compositional differences. Results: Vegetation patterns were explained by current environmental gradients, especially by land-use history. Cultivated and pasture sites had similar tree composition, distinct from reference sites. Herb composition of pasture and reference sites was similar and distinct from cultivated sites, suggesting the ,tenacity' of some forest herbs on formerly cleared sites. Tilling removes rhizomatous species, and disfavors species with unassisted dispersal. These life-history traits were underrepresented on cultivated sites, although ant-dispersed species were not. Conclusions: Historic land-use practices accounted for as much variation in species composition as environmental gradients. Furthermore, trees and herbs responded differently to past land-use practices. Life-history traits of individual species interact with the nature of disturbance to influence community composition. [source] Composition, size and dynamics of the seed bank in a mediterranean shrubland of ChileAUSTRAL ECOLOGY, Issue 5 2004Javier A. Figueroa Abstract Analysis was performed of the richness and abundance of woody species, forbs, and annual grasses in the easily germinating soil seed bank (henceforth seed bank) in a mediterranean shrubland of central Chile. The effects of successional development after fire and by microsite type (underneath or outside shrubs) on the density of seeds in the soil, and the relationship of species abundance in the seed bank with its abundance in the above-ground vegetation was examined. A total of 64 plant species were recorded in the seed bank, of which 44 were annual or biannual. Eight species were woody and another eight were perennial herbs. Four could not be identified to species level. The highest richness of established herbaceous species was recorded in late spring, with 31 species. The regeneration of the herbaceous vegetation was driven by the annual production of seeds and by a reserve of short-lived propagules in the soil. Density of all germinating seeds was significantly higher during late spring and late summer. Density of grass seeds was greater during late spring, while that of all other species was greater during late summer. Annual grass seeds accumulated in higher proportion at exposed microsites rather than under woody canopy, and in young (< 5 years old) and intermediate-age patches (10,20 years old) rather than in mature vegetation (30,50 years old). The abundance of established woody and herb species was uncorrelated with that of the seed bank. [source] The Role of Soil Seed Banks in the Rehabilitation of Degraded Hillslopes in Southern Wello, Ethiopia,BIOTROPICA, Issue 1 2000Kebrom Tekle ABSTRACT The species composition in the soil seed bank of degraded hillslopes in southern Wello, Ethiopia, was assessed using the seedling emergence method and compared with that of the standing vegetation. Surface soils were sampled at 0-to 5-cm depth from 49 plots of four physiognomic vegetation classes (hereafter vegetation classes): forests, shrublands, grasslands, and degraded sites. Soils were spread on sterile sand in a glasshouse and watered. Emerging seedlings were recorded for five months until no new seedlings emerged. A total of 3969 seedlings belonging to 71 species and 30 families germinated. The species composition of the seed bank was dominated by 53 herb species (75%) compared to 2 tree species which accounted for only 3 percent of the total number of species. Seedling density differed significantly among vegetation classes and ranged from 391 to 7807 seeds/m2. Mean species richness also differed significantly among the vegetation classes. Forty-two species were found to be common to the seed banks and the standing vegetation; however, correspondence between species numbers and composition of the seed banks and the standing vegetation was poor. Although most of the species that germinated in the seed banks were herbs and grasses, they can develop a vegetative cover and contribute to reduction of soil erosion. Regeneration of the tree species (some of which have seed viability up to four years) however, requires both time and the presence of mature individuals. Together with hillside closure and soil conservation measures (e.g., terracing), planting of native woody seedlings might help to expedite rehabilitation of degraded hillslopes devoid of trees and shrubs. [source] |