Hepatocyte Growth (hepatocyte + growth)

Distribution by Scientific Domains
Distribution within Medical Sciences

Terms modified by Hepatocyte Growth

  • hepatocyte growth factor
  • hepatocyte growth factor receptor

  • Selected Abstracts


    Antimalarial drugs , host targets (re)visited

    BIOTECHNOLOGY JOURNAL, Issue 3 2006
    Margarida Cunha-Rodrigues
    Abstract Every year, forty percent of the world population is at risk of contracting malaria. Hopes for the erradication of this disease during the 20th century were dashed by the ability of Plasmodium falciparum, its most deadly causative agent, to develop resistance to available drugs. Efforts to produce an effective vaccine have so far been unsuccessful, enhancing the need to develop novel antimalarial drugs. In this review, we summarize our knowledge concerning existing antimalarials, mechanisms of drug-resistance development, the use of drug combination strategies and the quest for novel anti-plasmodial compounds. We emphasize the potential role of host genes and molecules as novel targets for newly developed drugs. Recent results from our laboratory have shown Hepatocyte Growth Factor/MET signaling to be essential for the establishment of infection in hepatocytes. We discuss the potential use of this pathway in the prophylaxis of malaria infection. [source]


    The processing and utilization of hepatocyte growth factor/scatter factor following partial hepatectomy in the rat

    HEPATOLOGY, Issue 4 2001
    Peter Pediaditakis
    Hepatocyte growth factor/scatter factor (HGF/SF) is a pluripotent growth factor capable of acting as a motogen, a morphogen, and a mitogen. Originally, HGF/SF was found as a blood-borne mitogen for hepatocytes and has since been determined to be very important in liver repair. Previous studies have established that HGF/SF must be proteolytically cleaved to elicit its effects. After liver injury by toxins such as carbon tetrachloride or after surgical resection, partial hepatectomy (PHX), HGF/SF concentrations increase in the blood. The aims of this study were to examine (1) which form of HGF/SF is present in the normal liver, (2) which form is present in the regenerating liver after PHX, and (3) if the HGF/SF used after PHX is derived from existing liver reservoirs. Both single-chain HGF/SF and active two-chain HGF/SF are present in normal liver, with the former being the dominant form. After PHX, the liver can be described as having two phases with regard to the use of endogenous HGF/SF. The first phase from 0 to 3 hours is the consumptive phase and is characterized by a decrease in both single-chain HGF/SF and active two-chain HGF/SF. The second phase is the productive phase. It is characterized by a pronounced reappearance of both single-chain HGF/SF as well as two-chain HGF/SF. The activation index shows a 5-fold increase over sham operations during the productive phase. The use of radiolabeled HGF/SF showed that during the first 3 hours, HGF/SF is used in part from hepatic stores. Furthermore, during the first 3 hours after PHX, only active two-chain HGF/SF is seen in the plasma. [source]


    Hepatocyte growth factor stimulates cell motility in cultures of the striatal progenitor cells ST14A

    JOURNAL OF NEUROSCIENCE RESEARCH, Issue 5 2003
    E. Cacci
    Abstract Hepatocyte growth factor/scatter factor (HGF/SF) is a growth factor with pleiotropic effects on different cell types. It acts as a mitogen and motility factor for many epithelial cells. HGF/SF and its receptor Met are present in the developing and adult mammalian brain and control neuritogenesis of sympathetic and sensory neurons. We report that the striatal progenitor ST14A cells express the Met receptor, which is activated after binding with HGF/SF. The interaction between Met and HGF/SF triggers a signaling cascade that leads to increased levels of c-Jun, c-Fos, and Egr-1 proteins, in agreement with data reported on the signaling events evoked by HGF in other cellular types. We also studied the effects of the exposure of ST14A cells to HGF/SF. By time-lapse photography, we observed that a 24-hr treatment with 50 ng/ml HGF/SF induced modification in cell morphology, with a decrease in cell-cell interactions and increase of cell motility. In contrast, no effect on cell proliferation was observed. To investigate which intracellular pathway is primarily involved we used PD98059 and LY294002, two specific inhibitors of mitogen-activated protein kinase/extracellular signal-regulated kinase (MAP-kinase/ERK-kinase) and phosphoinositide 3-OH kinase (PI3-K), respectively. Cell motility in HGF/SF treated cultures was inhibited by LY294002 but not by PD98059, suggesting that PI3-K plays a key role in mediating the HGF/SF-induced dissociation of ST14A cells. Previous evidence of HGF stimulation of motility in nervous system has been obtained on postmitotic neurons, which have already acquired their specificity. Data reported here of a motogenic response of ST14A cell line, which displays properties of neuronal progenitors, seem of interest because they suggest that HGF could play a role in very early steps of neurogenesis. © 2003 Wiley-Liss, Inc. [source]


    Keratinocyte growth factor and scatter factor expression by regionally defined oral fibroblasts

    EUROPEAN JOURNAL OF ORAL SCIENCES, Issue 1 2003
    Scott Thomas William McKeown
    Keratinocyte growth factor (KGF) and hepatocyte growth factor/scatter factor (SF) are two signalling molecules thought to play important roles in regulating epithelial,mesenchymal interactions. Expression of both factors by fibroblasts in subepithelial connective tissue may play a role in maintaining epithelial integrity in health and in the apical migration of junctional epithelium in periodontitis. The aims of this study were (a) to compare expression levels of KGF and SF by periodontal ligament (PDL) and gingival fibroblasts; and (ii) to determine the effects of interleukin (IL)-1,, transforming growth factor (TGF)-,1, platelet-derived growth factor (PDGF)-BB and epidermal growth factor (EGF) on KGF/SF expression by these cell populations. Three paired PDL and gingival fibroblast strains were developed. The KGF and SF protein levels were analysed by enzyme-linked immunosorbent assay. Relative levels of KGF and SF mRNA in cytokine-treated cultures were determined using semiquantitative reverse transcriptase polymerase chain reaction. No differences in the levels of KGF and SF produced by PDL and gingival (SOG) populations were found. In both cell types IL-1, stimulated KGF and SF expression, while TGF-,1 significantly inhibited expression at both the mRNA and protein levels. Epidermal growth factor and PDGF-BB induced differing effects on expression, stimulating SF protein production but inhibiting KGF output in both fibroblast populations. Differences in response to EGF and PDGF were also seen between paired PDL and gingival fibroblasts. [source]


    The processing and utilization of hepatocyte growth factor/scatter factor following partial hepatectomy in the rat

    HEPATOLOGY, Issue 4 2001
    Peter Pediaditakis
    Hepatocyte growth factor/scatter factor (HGF/SF) is a pluripotent growth factor capable of acting as a motogen, a morphogen, and a mitogen. Originally, HGF/SF was found as a blood-borne mitogen for hepatocytes and has since been determined to be very important in liver repair. Previous studies have established that HGF/SF must be proteolytically cleaved to elicit its effects. After liver injury by toxins such as carbon tetrachloride or after surgical resection, partial hepatectomy (PHX), HGF/SF concentrations increase in the blood. The aims of this study were to examine (1) which form of HGF/SF is present in the normal liver, (2) which form is present in the regenerating liver after PHX, and (3) if the HGF/SF used after PHX is derived from existing liver reservoirs. Both single-chain HGF/SF and active two-chain HGF/SF are present in normal liver, with the former being the dominant form. After PHX, the liver can be described as having two phases with regard to the use of endogenous HGF/SF. The first phase from 0 to 3 hours is the consumptive phase and is characterized by a decrease in both single-chain HGF/SF and active two-chain HGF/SF. The second phase is the productive phase. It is characterized by a pronounced reappearance of both single-chain HGF/SF as well as two-chain HGF/SF. The activation index shows a 5-fold increase over sham operations during the productive phase. The use of radiolabeled HGF/SF showed that during the first 3 hours, HGF/SF is used in part from hepatic stores. Furthermore, during the first 3 hours after PHX, only active two-chain HGF/SF is seen in the plasma. [source]


    Unique epithelial cell production of hepatocyte growth factor/scatter factor by putative precancerous intestinal metaplasias and associated "intestinal-type" biliary cancer chemically induced in rat liver

    HEPATOLOGY, Issue 6 2000
    Guan-Hua Lai
    Recently, we observed that Met, the receptor for hepatocyte growth factor/scatter factor (HGF/SF), is overexpressed in epithelial cells of both early-appearing intestinal metaplastic glands in precancerous hepatic cholangiofibrotic tissue and neoplastic glands in later developed intestinal-type of cholangiocarcinoma originated from the furan rat model of cholangiocarcinogenesis when compared with normal and hyperplastic intrahepatic biliary epithelia. We now show that HGF/SF is also aberrantly expressed in a manner closely paralleling that of its receptor in the neoplastic epithelial cells of furan-induced rat cholangiocarcinomas and in a majority of metaplastic epithelial cells within earlier formed precancerous hepatic cholangiofibrotic tissue. Using in situ hybridization and reverse transcription-polymerase chain reaction (RT-PCR), we further showed specific expression of HGF/SF messenger RNA (mRNA) in a novel rat cholangiocarcinoma epithelial cell line overexpressing Met. This cholangiocarcinoma cell line, termed C611B, was established from tumorigenic cells isolated from a furan-induced transplantable tumor. Moreover, we detected by in situ hybridization strong expression of HGF/SF mRNA transcripts in the cancerous epithelial glands of cholangiocarcinoma developed in recipient rats after in vivo cell transplantation of C611B cells. In contrast, mRNA transcripts and protein immunoreactivity for this cytokine were not detected in hepatocytes and biliary epithelial cells in adult normal rat liver nor in rat hyperplastic intrahepatic biliary epithelium. Our results clearly show that HGF/SF becomes aberrantly expressed in cholangiocarcinoma epithelium and in putative precancerous intestinal metaplastic epithelium induced in the liver of furan-treated rats. [source]


    Lipoxin A4 inhibited hepatocyte growth factor-induced invasion of human hepatoma cells

    HEPATOLOGY RESEARCH, Issue 9 2009
    Xiao-Yan Zhou
    Aim:, Inflammation is a critical component of tumor progression. Lipoxin A4 (LXA4) has been approved for potent anti-inflammatory properties. Recently, it was reported that LXA4 repressed the expression and activity of cyclooxygenase-2 (COX-2), which is essential for invasion. However, there are few reports dealing with its effects on cancer. To explore whether LXA4 regulate invasion, the effects of LXA4 and its receptor agonist BML-111 on hepatocyte growth factor (HGF)-induced invasion of hepatoma cells and the possible mechanisms were researched. Methods:, Lipoxin A4 receptor (ALX) expression in HepG2 cells were measured through reverse transcription polymerase chain reaction and western blot. Cytotoxicity of LXA4 and BML-111 to HepG2 cells was detected by MTT and (3H)-TdR incorporation assay. Cell migration and invasion assays were performed using a Boyden chemotaxis chamber. COX-2 expression was detected by real-time polymerase chain reaction and western blot, respectively. Moreover, the expressions of matrix metalloproteinases (MMP)-2, MMP-9, I,B, and nuclear factor-,B (NF-,B) p65 were observed via western blot, and NF-,B transcriptional activity was tested by transfections and luciferase activities assay. Results:, ALX expression was detected in HepG2 cells, and suitable concentrations of LXA4 and BML-111 had no cytotoxicity to cells. LXA4 and BML-111 inhibited HGF-induced migration and invasion; downregulated COX-2, MMP-2 and -9; restrained HGF-induced I,B, degradation, NF-,B translocation and the transcriptional activity of NF-,B in HepG2 cells. Furthermore, exogenous PGE2 could reverse the inhibitory effects of LXA4 also BML-111 on HGF-induced invasion and migration partially. Conclusion:, LXA4 inhibited HGF-induced invasion of HepG2 cells through NF-,B/COX-2 signaling pathway partially. [source]


    Purification and characterization of endocan (endothelial cell-specific molecule-1), a circulating proteoglycan involved in tumour progression and inflammatory diseases

    INTERNATIONAL JOURNAL OF EXPERIMENTAL PATHOLOGY, Issue 4 2004
    Stéphane Sarrazin
    Introduction By virtue of the multiplicity of their protein-binding partners (e.g. growth factors, cytokines/chemokines), proteoglycans have been shown to be involved in the regulation of a large number of pathophysiological processes including cancer and inflammatory diseases. We have studied and characterized endocan, also called endothelial cell-specific molecule-1 (ESM-1), which represents a new group of circulating proteoglycans. Endocan is mainly expressed by endothelial cells but also by epithelial cells from lung, gut and kidney. Structurally, endocan is constituted of a mature polypeptide of 165 amino acids with a single glycosaminoglycan chain covalently linked to the serine at position 137 (Béchard et al. 2001). Methods and results We showed that human umbilical vein endothelial cells expressed endocan specifically with a single chain of dermatan sulfate (DS) as glycosaminoglycan moiety. As shown by surface plasmon resonance, the DS chain directly interacts with cytokines and growth factors including hepatocyte growth factor/scatter factor and could be responsible for endocan's biological activities. Human embryonic kidney 293 cells, which have been genetically engineered to overexpress endocan, induce tumour growth when injected subcutaneously in SCID mice. Moreover, inflammatory cytokines such as TNF-a and IL-1 have been shown to increase the synthesis and the secretion of endocan from human umbilical vein endothelial cells. Conclusion These results suggest that circulating levels of endocan may represent a novel marker for cancer and inflammatory diseases. Further studies on its GAG structure could help us to better understand the biological activities of endocan and to design future glycomic-based therapies. [source]


    NSAID-induced antral ulcers are associated with distinct changes in mucosal gene expression

    ALIMENTARY PHARMACOLOGY & THERAPEUTICS, Issue 1 2009
    J. C. DESAI
    Summary Background, The basis for individual variation in gastroduodenal vulnerability to NSAIDs is not well understood. Aim, To assess whether a gene expression signature is associated with susceptibility to gastroduodenal ulcerations. Methods, Twenty-five Helicobacter pylori negative adults were treated for 7 days with naproxen 500 mg b.d. Subjects underwent baseline and post-treatment endoscopy, during which biopsies were taken from antrum and duodenum. RNA extraction and cDNA synthesis were performed, followed by PCR of 23 genes relevant to mucosal injury and repair. Fold changes in gene expression were compared between subjects who developed ulcers and those who did not. Results, Compared with subjects who did not develop ulcers (n = 18), subjects who developed antral ulcers (n = 7) had significantly greater mucosal up-regulation of interleukin-8 [Fold change = 33.5 (S.E.M. = 18.5) vs. ,7.7 (3.2)] and of cyclo-oxygenase-2 [2.3 (1.7) vs. ,10.8 (2.2)]. Conversely, non-ulcer subjects had significantly greater up-regulation of toll-like receptor-4, cyclo-oxygenase-1 and hepatocyte growth factor [14.0 (2.2) vs. ,0.8 (1.0), 9.8 (2.4) vs. 0.0 (0.7) and 8.2 (2.6) vs. ,2.2 (0.3) respectively]. Conclusions, NSAID-induced antral ulcers are associated with a specific pattern of gastroduodenal mucosal gene expression. These patterns may provide an insight into the molecular basis of individual susceptibility to mucosal injury. [source]


    Cytokines, matrix metalloproteases, angiogenic and growth factors in tears of normal subjects and vernal keratoconjunctivitis patients

    ALLERGY, Issue 5 2009
    A. Leonardi
    Background:, To detect the presence of multiple mediators and growth factors in tears of vernal keratoconjunctivitis (VKC) patients with active disease using stationary phase antibody arrays. Methods:, Tears were collected from 12 normal subjects (CT) and 24 active VKC patients. Tears were centrifuged and successively probed using three microwell plate arrays specific for: (i) cytokines: interleukin (IL)-2, IL-4, IL-5, IL-8, IL-10, IL-12, IL-13, interferon-, and tumour necrosis factor-,; (ii) growth factors: basic fibroblast growth factor (bFGF), platelet-derived growth factor, thrombopoietin, angiopoietin-2, vascular endothelial growth factor (VEGF), hepatocyte growth factor (HGF), keratocyte growth factor, tissue inhibitor of metalloprotease (TIMP)-1 and heparin-binding epithelial growth factor (HB-EGF) and (iii) matrix metalloprotease (MMP)-1, MMP-2, MMP-3, MMP-8, MMP-9, MMP-10, MMP-13, TIMP-1 and TIMP-2. Results:, Interleukin-8 signals were detected in all CT and highly detected in all VKC samples. The Th2-type cytokines, IL-4, IL-5 and IL-10 were detected only in tears of VKC patients. Signals for bFGF, HB-EGF, VEGF and HGF were detected in 41,87% of VKC samples and in few CT samples. Only TIMP-1 and TIMP-2 were found in all normal and patient tear samples, whereas MMP-1, MMP-2, MMP-3, MMP-9 and MMP-10 were highly present in all VKC samples. Conclusions:, Stationary phase antibody array methodology was useful for the screening of various cytokines, growth factors and MMPs in tears. These analyses identified in tears of VKC patients previously unreported factors including MMP-3 and MMP-10 and multiple proteases, growth factors and cytokines, which may all play an important role in the pathogenesis of conjunctival inflammation. [source]


    Neoplastic hepatocyte growth associated with cyclin D1 redistribution from the cytoplasm to the nucleus in mouse hepatocarcinogenesis

    MOLECULAR CARCINOGENESIS, Issue 12 2006
    Masahiro Yamamoto
    Abstract Cyclin D1 overexpression is a frequent change in hepatocellular carcinomas (HCCs). Our present study demonstrated that cyclin D1 overexpression with abundant cyclin E, cdk4, cdk2, and p27Kip1 (p27) occurred in neoplastic hepatocytes from the early stage of mouse hepatocarcinogenesis. While cyclin D1 expression was mainly found in the cytoplasm of the tumor cells, it shifted to the nucleus in association with cell proliferation after the animals were subjected to a partial hepatectomy (PH), and then returned once more to the cytoplasm when the cells became quiescent. Inhibition of PI3 kinase (PI3K) by Ly294002 in mouse HCC cells in vitro suppressed the nuclear shift of cyclin D1 as well as cell proliferation, while PI3K activation by PTEN suppression failed to induce nuclear shift of cyclin D1, suggesting that PI3K activation is essential but not sufficient for the cyclin D1 nuclear shift. While MEK-ERK1/2 inhibition by PD98059 and mTOR inhibition by rapamycin affected the cyclin D1 nuclear shift and cell proliferation to a lesser extent, both these inhibitors reduced cyclin D1 levels. Finally, although p27, cdk4 and calmodulin (CaM) were detected in the cyclin D1 immunoprecipitates from both quiescent and proliferating HCC cells, Hsc70 and SSeCKS were detected only in the immunoprecipitate from quiescent cells, and p21Waf1/Cip1 (p21) was detected only in that from proliferating cells, suggesting that the cyclin D1 complex is different in quiescent and proliferating cells. These observations indicate that the nuclear/cytoplasmic localization of cyclin D1 plays an important role in the proliferation/quiescence of neoplastic hepatocytes. © 2006 Wiley-Liss, Inc. [source]


    Transcriptosome and serum cytokine profiling of an atypical case of myelodysplastic syndrome with progression to acute myelogenous leukemia

    AMERICAN JOURNAL OF HEMATOLOGY, Issue 10 2006
    Daruka Mahadevan
    Abstract A Native American-Indian female presenting with anemia and thrombocytosis was diagnosed with myelodysplastic syndrome (MDS, refractory anemia). Over the course of 5 years she developed cytopenias and periods of leukocytosis with normal bone marrow (BM) blast counts, features of an unclassifiable MDS/MPS syndrome. The patient ultimately progressed to acute myelogenous leukemia (AML, FAB M2) and had a normal karyotype throughout her course. The episodes of leukocytosis were associated with infectious complications. Transformation to AML was characterized by a BM blast percentage of 49%. Peripheral blood and BM samples were obtained for serum protein analysis and gene expression profiling (GEP) to elucidate her disease process. An ELISA assay of the serum analyzed ,80 cytokines, which demonstrated that hepatocyte growth factor/scatter factor and insulin-like growth factor binding protein 1 were markedly elevated compared to normal. GEP demonstrated a unique "tumor molecular profile," which included overexpression of oncogenes (HOXA9, N-MYC, KOC1), proliferative genes (PAWR, DLG5, AKR1C3), invasion/metastatic genes (FN1, N-CAM-1, ITGB5), pro-angiogenesis genes (c-Kit), and down regulation of tumor suppressor genes (SUI1, BARD1) and anti-apoptotic genes (PGLYRP, SERPINB2, MPO). Hence, a biomics approach has provided insight into elucidating disease mechanisms, molecular prognostic factors, and discovery of novel targets for therapeutic intervention. Am. J. Hematol., 2006. © 2006 Wiley-Liss, Inc. [source]