Hepatic Tissues (hepatic + tissue)

Distribution by Scientific Domains
Distribution within Medical Sciences


Selected Abstracts


Brain Death Activates Donor Organs and Is Associated with a Worse I/R Injury After Liver Transplantation

AMERICAN JOURNAL OF TRANSPLANTATION, Issue 6 2007
S. Weiss
The majority of transplants are derived from donors who suffered from brain injury. There is evidence that brain death causes inflammatory changes in the donor. To define the impact of brain death, we evaluated the gene expression of cytokines in human brain dead and ideal living donors and compared these data to organ function following transplantation. Hepatic tissues from brain dead (n = 32) and living donors (n = 26) were collected at the time of donor laparotomy. Additional biopsies were performed before organ preservation, at the time of transplantation and one hour after reperfusion. Cytokines were assessed by real-time reverse transcriptase,polymerase chain reaction (RT,PCR) and cytometric bead array. Additionally, immunohistological analysis of tissue specimens was performed. Inflammatory cytokines including IL-6, IL-10, TNF-,, TGF-, and MIP-1, were significantly higher in brain dead donors immediately after laparotomy compared to living donors. Cellular infiltrates significantly increased in parallel to the soluble cytokines IL-6 and IL-10. Enhanced immune activation in brain dead donors was reflected by a deteriorated I/R injury proven by elevated alanin-amino-transferase (ALT), aspartat-amino-transferase (AST) and bilirubin levels, increased rates of acute rejection and primary nonfunction. Based on our clinical data, we demonstrate that brain death and the events that precede it are associated with a significant upregulation of inflammatory cytokines and lead to a worse ischemia/reperfusion injury after transplantation. [source]


Vitamins A1 and A2 in hepatic tissue and subcellular fractions in mink feeding on fish-based diets and exposed to Aroclor 1242

ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 2 2002
Anne Käkelä
Abstract Two-month-old female mink were fed diets based on either Baltic herring (Clupea harengus membras) or freshwater smelt (Osmerus eperlanus) for 21 weeks. A portion of the smelt-fed mink were exposed orally to polychlorinated biphenyls (PCBs), Aroclor 1242 (1 mg/d). Retinol (vitamin A1), 3,4-didehydroretinol (vitamin A2), and their different fatty acyl esters were studied in hepatic tissue, microsomes, and cytosol by argentated reversed-phase high-performance liquid chromatography. As a result of Aroclor exposure, concentrations of the fatty acyl esters of vitamins A1 and A2 were about one-tenth and those of unesterified A2 one-fourth those of the control levels. In the fatty acyl esters, percentages of stearates (A1 -18:0 and A2 -18:0) increased at the expense of the other fatty acyl esters. The Aroclor exposure decreased concentrations of alcoholic and esterified forms of the A2 analog more than those of the corresponding A1 analog. In microsomes, Aroclor decreased the alcoholic and esterified vitamin analogs to the same extent (to 9,17%). In the cytosol compared to the control, the concentrations of the vitamin esters fell below 10%, but the alcoholic analogs remained at 30 to 40%. Despite equal dietary supply, in mink fed on Baltic herring, the hepatic levels of vitamin A1 were only about one-third of the values found in the smelt-fed mink. The organochlorines also altered hepatic lipid composition and impaired breeding and kit growth. In the kits of the females fed on Baltic herring, blood hemoglobin was decreased. [source]


Interferon regulatory factor-3 activation, hepatic interferon-stimulated gene expression, and immune cell infiltration in hepatitis C virus patients,

HEPATOLOGY, Issue 3 2008
Daryl T.-Y.
Interferon regulatory factor-3 (IRF-3) activation directs ,/, interferon production and interferon-stimulated gene (ISG) expression, which limits virus infection. Here, we examined the distribution of hepatitis C virus (HCV) nonstructural 3 protein, the status of IRF-3 activation, and expression of IRF-3 target genes and ISGs during asynchronous HCV infection in vitro and in liver biopsies from patients with chronic HCV infection, using confocal microscopy and functional genomics approaches. In general, asynchronous infection with HCV stimulated a low-frequency and transient IRF-3 activation within responsive cells in vitro that was associated with cell-to-cell virus spread. Similarly, a subset of HCV patients exhibited the nuclear, active form of IRF-3 in hepatocytes and an associated increase in IRF-3 target gene expression in hepatic tissue. Moreover, ISG expression profiles formed disease-specific clusters for HCV and control nonalcoholic fatty liver disease patients, with increased ISG expression among the HCV patients. We identified the presence of T cell and plasmacytoid dendritic cell infiltrates within all biopsy specimens, suggesting they could be a source of hepatic interferon in the setting of hepatitis C and chronic inflammatory condition. Conclusion: These results indicate that HCV can transiently trigger IRF-3 activation during virus spread and that in chronic HCV, IRF-3 activation within infected hepatocytes occurs but is limited. (HEPATOLOGY 2007.) [source]


Engineered measles virus as a novel oncolytic viral therapy system for hepatocellular carcinoma,

HEPATOLOGY, Issue 6 2006
Boris Blechacz
The oncolytic measles virus Edmonston strain (MV-Edm), a nonpathogenic virus targeting cells expressing abundant CD46, selectively destroys neoplastic tissue. Clinical development of MV-Edm would benefit from noninvasive monitoring strategies to determine the speed and extent of the spread of the virus in treated patients and the location of virus-infected cells. We evaluated recombinant MV-Edm expressing carcinoembryonic antigen (CEA) or the human sodium iodide symporter (hNIS) for oncolytic potential in hepatocellular carcinoma (HCC) and efficiency in tracking viruses in vivo by noninvasive monitoring. CD46 expression in human HCC and primary hepatocytes was assessed by flow cytometry and immunohistochemistry. Infectivity, syncytium formation, and cytotoxicity of recombinant MV-Edm in HCC cell lines were evaluated by fluorescence microscopy, crystal violet staining, and the MTS assay. Transgene expression in HCC cell lines after infection with recombinant MV-Edm in vitro and in vivo was assessed by CEA concentration, 125I-uptake, and 123I-imaging studies. Toxicology studies were performed in IfnarKO×CD46 transgenic mice. The CD46 receptor was highly expressed in HCC compared to nonmalignant hepatic tissue. Recombinant MV-Edm efficiently infected HCC cell lines, resulting in extensive syncytium formation followed by cell death. Transduction of HCC cell lines and subcutaneous HCC xenografts with recombinant MV-Edm resulted in high-level expression of transgenes in vitro and in vivo. MV-Edm was nontoxic in susceptible mice. Intratumoral and intravenous therapy with recombinant MV-Edm resulted in inhibition of tumor growth and prolongation of survival with complete tumor regression in up to one third of animals. In conclusion, engineered MV-Edm may be a potent and novel cancer gene therapy system for HCC. MV-Edm expressing CEA or hNIS elicited oncolytic effects in human HCC cell lines in vitro and in vivo, enabling the spread of the virus to be monitored in a noninvasive manner. (HEPATOLOGY 2006;44:1465,1477.) [source]


Uptake and Dispersion of Metformin in the Isolated Perfused Rat Liver

JOURNAL OF PHARMACY AND PHARMACOLOGY: AN INTERNATI ONAL JOURNAL OF PHARMACEUTICAL SCIENCE, Issue 8 2000
CHEN-HSI CHOU
Although metformin is a widely used oral antihyperglycaemic, the exact mechanisms of its cellular uptake and action remain obscure. In this study the hepatic extraction and disposition kinetics of metformin were investigated by use of an isolated in-situ rat liver preparation. The liver was perfused in single-pass mode with protein-free Krebs bicarbonate medium at a flow rate of 20mLmin,1. During constant infusion with 1 mgL,1 metformin hydrochloride the hepatic uptake of metformin approached equilibrium within 10 min. The steady-state availability, F, determined from the ratio of outflow concentration to input concentration, was 0.99±0.02 (mean±s.d., n=4). The outflow profile of metformin resulting from a bolus injection of 25 ,g into the portal vein, had a sharp peak then a slower declining terminal phase. The mean transit time (MTT; 49.5±14.5, n = 6) and normalized variance (CV2; 4.13±0.05) of the hepatic transit times of metformin were estimated by numerical integration from the statistical moments of the outflow data. The volume of distribution of metformin in the liver (1.58±0.28 mL (g liver),1) was estimated from its MTT. The volume of distribution is greater than the water space of liver, indicating that metformin enters the hepatic aqueous space and becomes distributed among cellular components. The magnitude of CV2 for metformin is greater than for the vascular marker sucrose, suggesting that distribution of metformin into hepatic tissue is not instantaneous. In conclusion, hepatic uptake of metformin is rate-limited by a permeability barrier. Although metformin is accumulated in the liver, the organ does not extract it. [source]


Protective effect of melatonin against oxidative stress induced by ligature of extra-hepatic biliary duct in rats: comparison with the effect of S-adenosyl- l -methionine

JOURNAL OF PINEAL RESEARCH, Issue 3 2000
Pedro Montilla López
In the present research, we studied the effect of the administration of melatonin or S-adenosyl- l -methionine (S-AMe) on oxidative stress and hepatic cholestasis produced by double ligature of the extra-hepatic biliary duct (LBD) in adult male Wistar rats. Hepatic oxidative stress was evaluated by the changes in the amount of lipid peroxides and by the reduced glutathione content (GSH) in lysates of erythrocytes and homogenates of hepatic tissue. The severity of the cholestasis and hepatic injury were determined by the changes in the plasma enzyme activities of alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (AP), g-glutamyl-transpeptidase (GGT), and levels of albumin, total bilirubin (TB) and direct bilirubin (DB). Either melatonin or S-AMe were administered daily 3 days before LBD, and for 10 days after biliary obstruction. LDB caused highly significant increases in plasma enzyme activities and in bilirubin and lipid peroxides levels in erythrocytes and hepatic tissue. At the same time, this procedure produced a notable decrease in the GSH pools in these biological media. Both melatonin and S-AMe administration were effective as antioxidants and hepatoprotective substances, although the protective effects of melatonin were superior; it prevented the GSH decrease and reduced significantly the increases in enzyme activities and lipid peroxidation products produced by biliary ligature. S-AMe did not modify the increased GGT activity nor did it decrease greatly the TB levels (43% melatonin vs. 14% S-AMe). However, S-AMe was effective in preventing the loss of GSH in erythrocytes and hepatic tissue, as was melatonin. The obtained data permit the following conclusions. First, the LDB models cause marked hepatic oxidative stress. Second, the participation of free radicals of oxygen in the pathogenecity and severity of cholestasis produced by the acute obstruction of the extra-hepatic biliary duct is likely. Third, the results confirm the function of S-AMe as an antioxidant and hepatoprotector. Finally, melatonin is far more potent and provides superior protection as compared to S-AMe. Considering the decrease in oxidative stress and the intensity of cholestasis, these findings have interesting clinical implications for melatonin as a possible therapeutic agent in biliary cholestasis and parenchymatous liver injury. [source]


Percutaneous liver biopsy in clinical practice

LIVER INTERNATIONAL, Issue 9 2007
Bandar Al Knawy
Abstract Percutaneous liver biopsy (PLB) is the standard procedure for obtaining hepatic tissue for histopathological examination, and remains an essential tool in the diagnosis and management of parenchymal liver diseases. The use of liver biopsy (LB) is increasing with the advent of liver transplantation and the progress being made in antiviral therapeutic agents. While blind percutaneous needle biopsy is the traditional technique, the use of ultrasound (US) guidance has increased considerably. Literatures were reviewed to assess the existing clinical practice of PLB with an emphasis on the technique, the operator, types of biopsy needles, quality of LB specimens and the risk of complications. The best available evidence indicates that the use of ultrasound-guided biopsy (UGB) is superior to blind needle biopsy (BNB). The odds ratios of the controlled studies showed that BNB carried a higher risk for major complications, postbiopsy pain and biopsy failure. Therefore, percutaneous LB under US control is superior to BNB and it is recommended that UGB be considered the standard of care for this important and widely used invasive procedure in the field of clinical hepatology. [source]


Chemomodulatory effects of Azadirachta indica on the hepatic status of skin tumor bearing mice

PHYTOTHERAPY RESEARCH, Issue 3 2006
Ashwani Koul
Abstract The liver plays an important role in the modulation of the process of carcinogenesis, as it is the primary site for the biotransformation of xenobiotics including carcinogens as well as anticancer drugs. The present study was designed to evaluate the biochemical alterations occurring in the liver of 7,12-dimethylbenz(a)anthracene (DMBA) induced skin tumor bearing male Balb/c mice and their modulation by aqueous Azadirachta indica leaf extract (AAILE). It was observed that skin tumor induction caused hepatic damage characterized by a decreased hepatosomatic index and significantly increased (p < 0.001) activities of the hepatic tissue injury marker enzymes, namely alkaline phosphatase, alanine aminotransferase and aspartate aminotransferase. However, upon treatment with AAILE, the above-mentioned alterations, including the increased activities of hepatic tissue injury marker enzymes, were significantly reversed, which signified the hepato-protective efficacy of Azadirachta indica. Increased oxidative stress was also observed in the hepatic tissue of skin tumor bearing mice as revealed by a significant increase (p < 0.001) in lipid peroxidation levels and a decrease in reduced glutathione contents and activities of various antioxidant enzymes studied, namely glutathione-S-transferase, glutathione peroxidase and glutathione reductase. The AAILE treatment reduced oxidative stress by decreasing lipid peroxidation levels and enhancing the reduced glutathione contents and activities of various antioxidant enzymes. The activities of the xenobiotic biotransformation enzymes, namely cytochrome P450, cytochrome b5 and glutathione-S-transferase, were found to be decreased in the hepatic tissue of tumor bearing mice. Treatment with AAILE further caused a decrease in the activity of cytochrome P450 and cytochrome b5, whereas it up-regulated the activity of glutathione-S-transferase. The significance of these observations with respect to the progress of the process of carcinogenesis is explained in the present research article. Copyright © 2006 John Wiley & Sons, Ltd. [source]


Bile ducts as a source of pancreatic , cells

BIOESSAYS, Issue 9 2004
Zoë D. Burke
In recent years, there have been a number of well-documented examples demonstrating that one cell type can be converted to another. Two such examples are the appearance of ectopic pancreas in the liver and formation of hepatic tissue in the pancreas. The conversion of liver to pancreas raises the intriguing possibility of generating insulin-producing , cells for therapeutic transplantation into diabetics. There is now a striking addition to the growing list of pancreatic conversions: the formation of pancreatic tissue in the developing biliary system.1 BioEssays 26:932,937, 2004. © 2004 Wiley Periodicals, Inc. [source]


Curcumin: potential for hepatic fibrosis therapy?

BRITISH JOURNAL OF PHARMACOLOGY, Issue 3 2008
M A O'Connell
The beneficial antioxidative, anti-inflammatory and antitumorigenic effects of curcumin have been well documented in relation to cancer and other chronic diseases. Recent evidence suggests that it may be of therapeutic interest in chronic liver disease. Hepatic fibrosis (scarring) occurs in advanced liver disease, where normal hepatic tissue is replaced with collagen-rich extracellular matrix and, if left untreated, results in cirrhosis. Curcumin inhibits liver cirrhosis in a rodent model and exerts multiple biological effects in hepatic stellate cells (HSCs), which play a central role in the pathogenesis of hepatic fibrosis. In response to liver injury, these cells proliferate producing pro-inflammatory mediators and extracellular matrix. Curcumin induces apoptosis and suppresses proliferation in HSCs. In addition, it inhibits extracellular matrix formation by enhancing HSC matrix metalloproteinase expression via PPAR, and suppressing connective tissue growth factor (CTGF) expression. In this issue, Chen and co-workers propose that curcumin suppresses CTGF expression in HSC by inhibiting ERK and NF-,B activation. These studies suggest that curcumin modulates several intracellular signalling pathways in HSC and may be of future interest in hepatic fibrosis therapy. British Journal of Pharmacology (2008) 153, 403,405; doi:10.1038/sj.bjp.0707580; published online 26 November 2007 [source]


Insulino-mimetic and anti-diabetic effects of vanadium compounds

DIABETIC MEDICINE, Issue 1 2005
A. K. Srivastava
Abstract Compounds of the trace element vanadium exert various insulin-like effects in in vitro and in vivo systems. These include their ability to improve glucose homeostasis and insulin resistance in animal models of Type 1 and Type 2 diabetes mellitus. In addition to animal studies, several reports have documented improvements in liver and muscle insulin sensitivity in a limited number of patients with Type 2 diabetes. These effects are, however, not as dramatic as those observed in animal experiments, probably because lower doses of vanadium were used and the duration of therapy was short in human studies as compared with animal work. The ability of these compounds to stimulate glucose uptake, glycogen and lipid synthesis in muscle, adipose and hepatic tissues and to inhibit gluconeogenesis, and the activities of the gluconeogenic enzymes: phosphoenol pyruvate carboxykinase and glucose-6-phosphatase in the liver and kidney as well as lipolysis in fat cells contributes as potential mechanisms to their anti-diabetic insulin-like effects. At the cellular level, vanadium activates several key elements of the insulin signal transduction pathway, such as the tyrosine phosphorylation of insulin receptor substrate-1, and extracellular signal-regulated kinase 1 and 2, phosphatidylinositol 3-kinase and protein kinase B activation. These pathways are believed to mediate the metabolic actions of insulin. Because protein tyrosine phosphatases (PTPases) are considered to be negative regulators of the insulin-signalling pathway, it is suggested that vanadium can enhance insulin signalling and action by virtue of its capacity to inhibit PTPase activity and increase tyrosine phosphorylation of substrate proteins. There are some concerns about the potential toxicity of available inorganic vanadium salts at higher doses and during long-term therapy. Therefore, new organo-vanadium compounds with higher potency and less toxicity need to be evaluated for their efficacy as potential treatment of human diabetes. [source]


Dichloroacetate- and trichloroacetate-induced oxidative stress in the hepatic tissues of mice after long-term exposure

JOURNAL OF APPLIED TOXICOLOGY, Issue 5 2010
Ezdihar A. Hassoun
Abstract Dichoroacetate (DCA) and trichloroacetate (TCA) were found to be hepatotoxic and hepatocarcinogenic in rodents. To investigate the role of oxidative stress in the long-term hepatotoxicity of the compounds, groups of mice were administered 7.7, 77, 154 and 410,mg,kg,1 per day, of either DCA or TCA, by gavage, for 4 weeks (4-W) and 13 weeks (13-W), and superoxide anion (SA), lipid peroxidation (LP) and DNA-single strand breaks (SSBs) were determined in the hepatic tissues. Significant increases in all of the biomarkers were observed in response to the tested doses of both compounds in the two test periods, with significantly greater increases observed in the 13-W, as compared with the 4-W, period. Hepatomegaly was only observed with a DCA dose of 410,mg,kg,1 per day in the 13-W treatment period, and that was associated with significant declines in the biomarkers, when compared with the immediately lower dose. With the exception of LP production in the 13-W treatment period that was similarly induced by the two compounds, the DCA-induced increases in all of the biomarkers were significantly greater than those of TCA. Since those biomarkers were significantly induced by the compounds' doses that were shown to be carcinogenic but at earlier periods than those demonstrating hepatotoxicity/haptocarcinogencity, they can be considered as initial events that may lead to later production of those long-term effects. The results also suggest LP to be a more significant contributing mechanism than SA and DNA damage to the long-term hepatotoxicity of TCA. Copyright © 2010 John Wiley & Sons, Ltd. [source]


Dichloroacetate- and trichloroacetate-induced phagocytic activation and production of oxidative stress in the hepatic tissues of mice after acute exposure

JOURNAL OF BIOCHEMICAL AND MOLECULAR TOXICOLOGY, Issue 1 2008
Ezdihar A. Hassoun
Abstract Dichoroacetate (DCA) and trichloroacetate (TCA) are by-products formed during chlorination of the drinking water and were found to be hepatotoxic and hepatocarcinogenic in rodents. In this study, the abilities of the compounds to induce oxidative stress and phagocytic activation have been studied in B6C3F1 mice. Groups of mice were administered 300 mg/kg of either DCA or TCA, p.o, and were sacrificed after 6 or 12 h. Peritoneal lavage cells (PLCs) were isolated and assayed for superoxide anion (SA) production, and hepatic tissues were assayed for the production of SA, lipid peroxidation (LP), and DNA-single strand breaks (SSBs). TCA resulted in significant production of SA in the PLCs, and in the production of SA, LP, and DNA-SSBs in the hepatic tissues, 12 h after dosing, as compared with the control. DCA administration, on the other hand, resulted in significant increases in the productions of LP and DNA-SSBs in the hepatic tissues at both time points, and in SA production in PLCs and hepatic tissues, 6 h after dosing. However, DCA-induced increases in SA production in PLC and hepatic tissues declined at the 12-h time point, reaching control level in the hepatic tissues. These results may implicate the contribution of phagocytic activation to the induction of oxidative stress in the hepatic tissues and also the role of SA production in the induction of LP and/or DNA damage in those tissues, in response to the compounds. The results also suggest studying the involvement of these mechanisms in the long-term hepatotoxicity/hepatocarcinogencity of the compounds. © 2008 Wiley Periodicals, Inc. J Biochem Mol Toxicol 22:27,34, 2008; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/jbt.20210 [source]


Comparative study between the effect of the peroxisome proliferator activated receptor-, ligands fenofibrate and n-3 polyunsaturated fatty acids on activation of 5,-AMP-activated protein kinase-,1 in high-fat fed rats

JOURNAL OF PHARMACY AND PHARMACOLOGY: AN INTERNATI ONAL JOURNAL OF PHARMACEUTICAL SCIENCE, Issue 10 2009
Tarek M. Kamal Motawi
Abstract Objectives Obesity is a risk factor for type 2 diabetes mellitus. It results from an energy imbalance in which energy intake exceeds energy expenditure. The cellular fuel gauge 5,-AMP-activated protein kinase (AMPK) is a heterotrimeric protein consisting of one catalytic subunit (,) and two non-catalytic subunits (, and ,), and approximately equal levels of ,1 and ,2 complexes are present in the liver. AMPK regulates metabolic pathways in response to metabolic stress and in particular ATP depletion to switch on energy-producing catabolic pathways such as ,-oxidation of fatty acids and switch off energy-depleting processes such as synthesis of fatty acid and cholesterol. A high-fat diet alters AMPK-,1 gene expression in the liver and skeletal muscle of rats and results in body weight gain and hyperglycaemia. The aim of this study was to investigate and compare the potential effects of peroxisome proliferator-activated receptor (PPAR)-, agonists fenofibrate and n-3 polyunsaturated fatty acids (PUFAs) in modulation of AMPK-,1 activity in liver and skeletal muscle of high-fat diet fed rats. Methods Reverse transcription,polymerase chain reaction was used for determination of AMPK-,1 in liver and soleus muscle and both PPAR-, and CPT-1 in hepatic tissues. Serum, total cholesterol, triacylglycerol, fatty acid and fasting blood glucose were determined colorimetrically. Key findings Both PPAR-, agonists, fenofibrate and n-3 PUFA, increased the mRNA expression of AMPK-,1 activity in liver and skeletal muscle of obese diabetic rats. Fenofibrate was superior in its activation of hepatic mRNA expression of AMPK-, 1 to exert more lipolytic effect and body weight reduction, as estimated through the decrease of triacylglycerol output and serum levels of fatty acid on the one hand and the increase in CPT-1 mRNA expression, the key enzyme in ,-oxidation of fatty acid, on the other hand. n-3 PUFA activated AMPK-,1 mRNA expression in skeletal muscle much more than fenofibrate to reveal more hypoglycaemic effect. Conclusions The PPAR-, agonists fenofibrate and n-3 PUFA could efficiently activate AMPK-,1 mRNA expression in liver and skeletal muscle to exert body weight reduction and hypoglycaemic effect, respectively. [source]


Pinealectomy reduces hepatic and muscular glycogen content and attenuates aerobic power adaptability in trained rats

JOURNAL OF PINEAL RESEARCH, Issue 1 2007
Cristina das Neves Borges-Silva
Abstract:, The current study emphasizes the crucial role of the pineal gland on the effects of chronic training in different tissues focusing on carbohydrate metabolism. We investigated the maximal oxygen uptake (aerobic power), muscle and liver glycogen content, and also the enzymes involved in the carbohydrate metabolism of rat adipose tissue. Pinealectomized and sham-operated adult male Wistar rats were distributed into four groups: pinealectomized (PINX) untrained, pinealectomized trained, control untrained and control trained. The maximal oxygen uptake capability was assayed before and after the training protocol by indirect open circuit calorimetry. The rats were killed after 8 wk of training. Blood samples were collected for glucose and insulin determinations. The glycogen content was assayed in the liver and muscle. Maximal activities of epididymal adipose tissue enzymes (hexokinase, pyruvate kinase, lactate dehydrogenase, citrate synthase and malic enzyme) as well as adipocyte size were determined. The exercise training in control animals promoted an increase in the aerobic power and in liver glycogen content but caused a reduction in the malic enzyme activity in adipose tissue. However, PINX trained animals, in contrast to trained controls, showed a decrease in the aerobic power and in liver and muscle glycogen content, as well as an increase in the activity of the adipocyte enzymes involved in carbohydrate metabolism. In conclusion, these data show that the pineal gland integrity is necessary for the homeostatic control of energy metabolism among adipose, muscle and hepatic tissues. The pinealectomized animals showed alterations in adaptive responses of the maximal oxygen uptake to training. Therefore, the pineal gland must be considered an influential participant in the complex adaptation to exercise and is involved in the improvement of endurance capacity. [source]


Effects of yeast probiotic formulation on viability, revival and protection against infection with Salmonella enterica ssp. enterica serovar Typhimurium in mice

LETTERS IN APPLIED MICROBIOLOGY, Issue 6 2009
F.S. Martins
Abstract Aims:, To compare the effects of five yeast probiotic formulations on viability, revival and washout kinetic in the digestive tract of mice, and the protection against an experimental infection with Salmonella enterica serovar Typhimurium. Methods and Results:, The number of viable cells in five commercial probiotic products codified as A, B, C and D (Saccharomyces boulardii, lyophilized) and E (Saccharomyces cerevisiae, aqueous suspension) was determined, as well as revival and washout kinetic in mouse intestine. Protective capacity was evaluated by survival rate and histopathology of liver and intestine of mice treated with each product and then challenged with Salm. Typhimurium. Conclusions:, Product A contained the highest number of viable cells and, fed to mice, gave the highest counts of viable yeasts and the longest persistence in faeces. Probably as a consequence, the highest survival and protection of intestinal and hepatic tissues were observed when product A was used for mouse treatment. Product E showed low counts in the formulation and was not recovered from mouse intestine. Significance and Impact of the Study:, Formulation (lyophilization or aqueous suspension) is an important factor for revival and survival of a probiotic product in vivo and consequently for its protective properties. [source]


Azadirachta indica modulates carcinogen biotransformation and reduced glutathione at peri-initiation phase of benzo(a)pyrene induced murine forestomach tumorigenesis

PHYTOTHERAPY RESEARCH, Issue 9 2008
Subhash Chander Gangar
Abstract The present study evaluated the effects of aqueous Azadirachta indica leaf extract (AAILE) on the activities of certain phase I (cytochrome P450, cytochrome b5 and aryl hydrocarbon hydroxylase) as well as phase II (glutathione- S -transferase and UDP-glucuronosyl transferase) biotransformation enzymes; and reduced glutathione (GSH) (in forestomach and hepatic tissues) during/after intra-gastric instillations of B(a)P in murine forestomach tumorigenesis bioassay protocol. The activities of phase I biotransformation enzymes were found to increase, whereas a decrease in GSH content as well as glutathione- S -transferase was observed in mice receiving only B(a)P during as well as 2 weeks after B(a)P instillations. The activity of UDP-glucuronosyltransferase decreased during B(a)P instillations, whereas after the latter, the activity increased when compared with the control mice. However, in mice that received AAILE along with B(a)P instillations, a decrease in phase I enzymes was accompanied by an increase in phase II enzymes as well as GSH contents. Only AAILE treatment reduced the activities of phase I biotransformation enzymes and enhanced the GSH contents as well as the activities of phase II enzymes. Observations of the present study seem to be quite significant and (when taken together with our earlier findings) provides evidence for A. indica mediated modulation of the peri-initiation phase of the process of forestomach tumorigenesis. Copyright © 2008 John Wiley & Sons, Ltd. [source]


Ameliorative effects of pycnogenol® on carbon tetrachloride-induced hepatic oxidative damage in rats

PHYTOTHERAPY RESEARCH, Issue 11 2007
Tai-Hwan Ahn
Abstract This study evaluated the putative antioxidant activity of Pycnogenol® (PYC) against CCl4 -induced hepatic oxidative damage in Sprague-Dawley rats. A single oral dose of CCl4 (1.25 mL/kg) produced significantly increased levels of serum aminotransferase (AST) and alanine aminotransferase (ALT) activities. In addition, increased malondialdehyde (MDA) concentration, reduced glutathione (GSH) content, and decreased catalase, superoxide dismutase (SOD) and glutathione-S-transferase (GST) activities were observed in the hepatic tissues. However, concomitant administration with PYC (10 or 20 mg/kg) significantly improved CCl4 -induced hepatic injury, as evidenced by the decline of serum AST and ALT activities in a dose dependent manner. Moreover, PYC reduced MDA concentration and increased GSH levels and catalase, SOD and GST activities in hepatic tissues, indicating that concomitant administration with PYC efficiently prevent the CCl4 -induced oxidative damage in rats. The free radical scavenging assay showed that PYC has a dose-dependent scavenging activity against 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radicals. These results indicate that PYC has an antioxidant effect against CCl4 -induced hepatic oxidative damage and is useful as a hepatoprotective agent against various liver diseases induced by oxidative stress. Copyright © 2007 John Wiley & Sons, Ltd. [source]


Effect of , -Interferon and , -Tocopherol in Reversing Hepatic Cirrhosis in Rats

ANATOMIA, HISTOLOGIA, EMBRYOLOGIA, Issue 2 2007
T. C. Mathew
Summary The aim of this study was to assess the effects of , -interferon and , -tocopherol (vitamin E), or a combination of both, in reversing hepatic fibrosis following the induction of cirrhosis using thioacetamide by histological and biochemical analysis. Fifty male Wistar rats were used in this study. The animals were divided equally into five groups. Animals in group I were used as controls. The remaining animals (groups II,V) were provided with 0.5 g/L of thioacetamide in order to induce liver cirrhosis. Group II animals were used as the cirrhotic control. Animals of groups III, IV and V were given , -interferon, , -tocopherol and interferon together with , -tocopherol, respectively, for 30 days. After 30 days the animals were killed and following gross morphological examination of the liver, the hepatic tissues were processed for histological analysis and the serum was used for liver function tests. Morphological analysis showed a decrease in the number of nodules on the surface of the liver in both interferon- as well as vitamin E-treated cirrhotic rats. Histopathological analysis showed that the abnormalities of the cirrhotic liver were partially reversed and liver function tests showed an overall improvement following treatment of animals of groups III, IV and V. Combination therapy using both interferon and , -tocopherol did not have any substantial effect on the rats compared with that when they were given separately. These findings suggest that , -interferon and , -tocopherol may have therapeutic value in reversing liver cirrhosis. [source]


Level of Superoxide Dismutase, Glutathione Peroxidase and Uric Acid in Thioacetamide-Induced Cirrhotic Rats

ANATOMIA, HISTOLOGIA, EMBRYOLOGIA, Issue 2 2002
H. ABUL
Levels of superoxide dismutase and glutathione peroxidase were determined in blood and hepatic tissues of thioacetamide-induced cirrhotic rats and compared to levels in age-matched control animals. The plasma level of uric acid was also determined in these animals. A general decrease was noticed in the level of all the antioxidants examined as compared to the control. This decrease was statistically significant in the level of all the antioxidants studied, except for the level of superoxide dismutase in blood. A decrease in the antioxidant level may indicate an increase in free radical level and thereby an increase in cellular damage in cirrhotic rats. The changes in the level of antioxidants showed a direct correlation with the changes in the level of trace elements observed in our previous studies. These studies suggest that antioxidants alone or in combination with trace elements may have beneficial effects in treating liver cirrhosis. [source]


PTEN expression is down-regulated in liver tissues of rats with hepatic fibrosis induced by biliary stenosis

APMIS, Issue 9 2009
LI SEN HAO
The gene phosphatase and tensin homolog deleted on chromosome 10 (PTEN) codes for a tumor-suppressor phospholipid phosphatase. Deletion, mutation or abnormal expression of PTEN is commonly found in many kinds of malignant tumors. At the time of this study, though, the role of PTEN expression in the pathology of hepatic fibrosis remains unclear. In this study, we investigate the dynamic expression of PTEN in a rat model of hepatic fibrosis, with special emphasis on the activation and proliferation of hepatic stellate cells (HSC) in vivo. The rat model of hepatic fibrosis used in this study employed common bile duct ligation. At four time points, the expression of PTEN in hepatic tissues and activated HSC in rat liver tissues was measured by immunohistochemical staining, Western blotting, real-time fluorescent quantitative PCR and immunofluorescence confocal laser scanning microscopy, respectively. Further, ,-smooth muscle actin (,-SMA), an activated HSC marker in rat liver tissues, was detected by immunohistochemical staining. This study showed that aggravation of hepatic fibrosis led to gradually decreasing expression of PTEN in the hepatic tissues. Further, as hepatic fibrosis worsens, PTEN-expressing activated HSC accounts for an increasingly smaller percentage of all activated HSC. In contrast, the percentage of ,-SMA-expressing HSC cells increases significantly. In conclusion, expression of PTEN mRNA and protein is down-regulated in fibrogenic rat liver tissue, and its expression in HSC in vivo also decreases with progression of fibrosis. Thus, these results show that the dynamic expression of PTEN in hepatic tissues negatively correlates with activation and proliferation of HSC. [source]


Hepatoprotective effect of oleuropein in mice: Mechanisms uncovered by gene expression profiling

BIOTECHNOLOGY JOURNAL, Issue 9 2010
Yunjung Kim
Abstract Oleuropein, an active constituent of olive leaf, has a variety of pharmacological activities associated with its capacity to scavenge reactive oxygen species. Oleuropein is also reported to have protective effects against non-alcoholic fatty liver disease (NAFLD) in vivo. In this study, gene expression profiling of hepatic tissues was examined, and transcription factors (TFs) with target genes that were modulated by oleuropein were identified to gain insights into the molecular mechanisms for the hepatoprotective action of this compound. C57BL/6N mice were fed either a high-fat diet (HFD) or 0.03% oleuropein-supplemented HFD for 10 weeks, after which their livers were subjected to oligo DNA microarray analysis. The oleuropein with which the HFD was supplemented reduced the hepatic mRNA level of the genes that encoded the key regulators of the hepatic fatty acid uptake and transport. In addition, the oleuropein reduced the expression of a number of hepatic genes involved in the oxidative stress responses and detoxification of lipid peroxidation products and proinflammatory cytokine genes. The (putative) candidate TFs that bound to the promoters of the genes regulated at least threefold (both up and down) by oleuropein were implicated in the lipogenesis, inflammation, insulin resistance, fibrosis, and cell proliferation and differentiation, which implies that the mechanisms that underlie the beneficial effects of oleuropein on NAFLD may be multifactorial. [source]