Hepatic Insulin Resistance (hepatic + insulin_resistance)

Distribution by Scientific Domains
Distribution within Medical Sciences


Selected Abstracts


The importance of steatosis in chronic hepatitis C infection and its management: A review

HEPATOLOGY RESEARCH, Issue 3 2010
Timothy J. S. Cross
Hepatitis C virus (HCV) infection is a major cause of chronic liver disease with approximately 180 million people infected worldwide. Hepatic steatosis is a frequent histological finding in chronic hepatitis C (CHC) infection and is 2- to 3-fold more common than would be expected by chance alone. A high body mass index with excess visceral fat distribution is associated with steatosis in patients infected with HCV genotype 1 but not genotype 3, re-enforcing the concept that in patients with CHC, some have "metabolic steatosis", predominantly HCV genotype 1, and others "viral steatosis", mainly HCV genotype 3. Accumulating evidence suggests that steatosis may contribute to progression of fibrosis in CHC. Hepatic insulin resistance appears to play a role through the pro-fibrogenic effects of compensatory hyperinsulinemia. The aim of this review was to assess the effect host and viral factors play in steatosis development in patients with CHC infection and its possible relationship with hepatocellular carcinoma. The review examines the mechanisms by which CHC infection causes hepatic steatosis, the impact hepatic steatosis has on the natural history of the disease and finally, explores if treatments leading to a reduction in the amount of steatosis might lead to improved treatment outcomes. The basic medical science of steatosis in CHC will be discussed including proposed models of steatogenesis and the influence of viral and metabolic factors at the molecular level and how these might impact on current and future therapies. [source]


AMP-activated protein kinase in the regulation of hepatic energy metabolism: from physiology to therapeutic perspectives

ACTA PHYSIOLOGICA, Issue 1 2009
B. Viollet
Abstract As the liver is central in the maintenance of glucose homeostasis and energy storage, knowledge of the physiology as well as physiopathology of hepatic energy metabolism is a prerequisite to our understanding of whole-body metabolism. Hepatic fuel metabolism changes considerably depending on physiological circumstances (fed vs. fasted state). In consequence, hepatic carbohydrate, lipid and protein synthesis/utilization are tightly regulated according to needs. Fatty liver and hepatic insulin resistance (both frequently associated with the metabolic syndrome) or increased hepatic glucose production (as observed in type 2 diabetes) resulted from alterations in substrates oxidation/storage balance in the liver. Because AMP-activated protein kinase (AMPK) is considered as a cellular energy sensor, it is important to gain understanding of the mechanism by which hepatic AMPK coordinates hepatic energy metabolism. AMPK has been implicated as a key regulator of physiological energy dynamics by limiting anabolic pathways (to prevent further ATP consumption) and by facilitating catabolic pathways (to increase ATP generation). Activation of hepatic AMPK leads to increased fatty acid oxidation and simultaneously inhibition of hepatic lipogenesis, cholesterol synthesis and glucose production. In addition to a short-term effect on specific enzymes, AMPK also modulates the transcription of genes involved in lipogenesis and mitochondrial biogenesis. The identification of AMPK targets in hepatic metabolism should be useful in developing treatments to reverse metabolic abnormalities of type 2 diabetes and the metabolic syndrome. [source]


Insulin resistance in type 2 diabetes: role of fatty acids,

DIABETES/METABOLISM: RESEARCH AND REVIEWS, Issue S2 2002
Peter Arner
Abstract Insulin resistance is one of the key factors responsible for hyperglycaemia in type 2 diabetes and can result in a number of metabolic abnormalities associated with cardiovascular disease (insulin resistance syndrome), even in the absence of overt diabetes. The mechanisms involved in the development of insulin resistance are multifactorial and are only partly understood, but increased availability of free fatty acids (FFAs) is of particular importance for the liver and skeletal muscle. The role of FFAs in type 2 diabetes is most evident in obese patients who have several abnormalities in FFA metabolism. Because of a mass effect, the release of FFAs from the total adipose tissue depot to the blood stream is increased and the high concentration of circulating FFAs impairs muscle uptake of glucose by competitive inhibition. In upper-body obesity, which predisposes individuals to type 2 diabetes, the rate of lipolysis is accelerated in visceral adipose tissue. This results in a selective increase in FFA mobilisation to the portal vein, which connects visceral fat to the liver. A high ,portal' FFA concentration has undesirable effects on the liver, resulting in dyslipidaemia, hyperinsulinaemia, hyperglycaemia and hepatic insulin resistance. Recently, a new class of antidiabetic agents, the thiazolidinediones (TZDs) or ,glitazones' has been developed. A prominent effect of these agents is the lowering of circulating FFA levels and it is believed, but not yet proven, that this interaction with FFAs constitutes a major mechanism behind the glucose-lowering effect of the TZDs. Copyright © 2002 John Wiley & Sons, Ltd. [source]


Recent concepts in non-alcoholic fatty liver disease

DIABETIC MEDICINE, Issue 9 2005
L. A. Adams
Abstract Non-alcoholic fatty liver disease (NAFLD) is present in up to one-third of the general population and in the majority of patients with metabolic risk factors such as obesity and diabetes. Insulin resistance is a key pathogenic factor resulting in hepatic fat accumulation. Recent evidence demonstrates NAFLD in turn exacerbates hepatic insulin resistance and often precedes glucose intolerance. Once hepatic steatosis is established, other factors, including oxidative stress, mitochondrial dysfunction, gut-derived lipopolysaccharide and adipocytokines, may promote hepatocellular damage, inflammation and progressive liver disease. Confirmation of the diagnosis of NAFLD can usually be achieved by imaging studies, however, staging the disease requires a liver biopsy. NAFLD is associated with an increased risk of all-cause death, probably because of complications of insulin resistance such as vascular disease, as well as cirrhosis and hepatocellular carcinoma, which occur in a minority of patients. NAFLD is also now recognized to account for a substantial proportion of patients previously diagnosed with ,cryptogenic cirrhosis'. Diabetes, obesity and the necroinflammatory form of NAFLD known as non-alcoholic steatohepatitis, are risk factors for progressive liver disease. Current treatment relies on weight loss and exercise, although various insulin-sensitizing medications appear promising. Further research is needed to identify which patients will achieve the most benefit from therapy. [source]


Free fatty acids in obesity and type 2 diabetes: defining their role in the development of insulin resistance and ,-cell dysfunction

EUROPEAN JOURNAL OF CLINICAL INVESTIGATION, Issue 2002
G. Boden
Abstract Plasma free fatty acids (FFA) play important physiological roles in skeletal muscle, heart, liver and pancreas. However, chronically elevated plasma FFA appear to have pathophysiological consequences. Elevated FFA concentrations are linked with the onset of peripheral and hepatic insulin resistance and, while the precise action in the liver remains unclear, a model to explain the role of raised FFA in the development of skeletal muscle insulin resistance has recently been put forward. Over 30 years ago, Randle proposed that FFA compete with glucose as the major energy substrate in cardiac muscle, leading to decreased glucose oxidation when FFA are elevated. Recent data indicate that high plasma FFA also have a significant role in contributing to insulin resistance. Elevated FFA and intracellular lipid appear to inhibit insulin signalling, leading to a reduction in insulin-stimulated muscle glucose transport that may be mediated by a decrease in GLUT-4 translocation. The resulting suppression of muscle glucose transport leads to reduced muscle glycogen synthesis and glycolysis. In the liver, elevated FFA may contribute to hyperglycaemia by antagonizing the effects of insulin on endogenous glucose production. FFA also affect insulin secretion, although the nature of this relationship remains a subject for debate. Finally, evidence is discussed that FFA represent a crucial link between insulin resistance and ,-cell dysfunction and, as such, a reduction in elevated plasma FFA should be an important therapeutic target in obesity and type 2 diabetes. [source]


Sites and mechanisms of insulin resistance in nonobese, nondiabetic patients with chronic hepatitis C,

HEPATOLOGY, Issue 3 2009
Ester Vanni
Chronic hepatitis C (CHC) has been associated with type 2 diabetes and insulin resistance, but the extent of impairment in insulin action, the target pathways involved, and the role of the virus per se have not been defined. In this study, we performed a euglycemic hyperinsulinemic clamp (1 mU · minute,1 · kg,1) coupled with infusion of tracers ([6,6- 2H2]glucose, [2H5]glycerol) and indirect calorimetry in 14 patients with biopsy-proven CHC, who were selected not to have any features of the metabolic syndrome, and in seven healthy controls. We also measured liver expression of inflammatory cytokines/mediators and tested their association with the metabolic parameters. Compared to controls, in patients with CHC: (1) total glucose disposal (TGD) during the clamp was 25% lower (P = 0.003) due to impaired glucose oxidation (P = 0.0002), (2) basal endogenous glucose production (EGP) was 20% higher (P = 0.011) and its suppression during the clamp was markedly reduced (P = 0.007), and (3) glycerol appearance was not different in the basal state or during the clamp, but lipid oxidation was less suppressed by insulin (P = 0.004). Lipid oxidation was higher in patients with CHC who had more steatosis and was directly related to EGP, TGD, and glucose oxidation. The decreased insulin-stimulated suppression of EGP was associated with increased hepatic suppressor of cytokine signaling 3 (SOCS3; P < 0.05) and interleukin-18 (P < 0.05) expression. Conclusion: Hepatitis C infection per se is associated with peripheral and hepatic insulin resistance. Substrate competition by increased lipid oxidation and possibly enhanced hepatic expression of inflammatory cytokines/mediators could be involved in the defective glucose regulation. (HEPATOLOGY 2009.) [source]


Transcription factor 7,like 2 polymorphism modulates glucose and lipid homeostasis, adipokine profile, and hepatocyte apoptosis in NASH,

HEPATOLOGY, Issue 2 2009
Giovanni Musso
Genetic factors underlying the association of NAFLD with diabetes and atherosclerosis are unknown. Recent human studies suggest transcription factor 7,like 2 (TCF7L2) polymorphism predisposes to diabetes through modulation of ,-cell function and modulates lipid levels in familial dyslipidemia. Emerging experimental evidence connects TCF7L2 to adipocyte metabolism and lipid homeostasis, as well. We tested if TCF7L2 polymorphism is a risk factor for nonalcoholic fatty liver disease (NAFLD) and if it modulates liver injury, glucose homeostasis, lipoprotein, and adipokine profiles in NASH. TCF7L2 genotype and dietary habits of 78 nondiabetic normolipidemic NAFLD subjects and 156 age-, body mass index,, sex-matched healthy controls were assessed. In 39 biopsy-proven nonalcoholic steatohepatitis (NASH) and matched controls TCF7L2 polymorphism was correlated to liver histology and oral glucose tolerance test,derived parameters of glucose homeostasis. Patients with NASH and controls consumed a high-fat meal and TCF7L2 genotype was correlated to postprandial circulating lipoproteins, adipokines, and cytokeratin-18 fragments. The TCF7L2 CT/TT genotype was more frequent in NAFLD and predicted the presence and severity of liver disease, of ,-cell dysfunction, of reduced incretin effect and hepatic insulin resistance in NASH; it also modulated postprandial hepatocyte apoptosis, lipoproteins, and adipokine profiles in both groups. Conclusion: TCF7L2 polymorphism predisposes to NAFLD and significantly impacts liver injury, glucose homeostasis, and postprandial lipoprotein and adipokine responses to fat ingestion. This polymorphism also modulates a fat-induced increase in circulating markers of hepatocyte apoptosis in NASH. Targeting postprandial lipemia, at least in at-risk TCF7L2 genotypes, may improve liver disease and glucose dysmetabolism in these patients. (HEPATOLOGY 2008.) [source]


Effect of Withania somnifera on Insulin Sensitivity in Non-Insulin-Dependent Diabetes Mellitus Rats

BASIC AND CLINICAL PHARMACOLOGY & TOXICOLOGY, Issue 6 2008
Tarique Anwer
NIDDM was induced by single intraperitoneal injection of streptozotocin (100 mg/kg) to 2 days old rat pups. WS (200 and 400 mg/kg) was administered orally once a day for 5 weeks after the animals were confirmed diabetic (i.e. 75 days after streptozotocin injection). A group of citrate control rats (group I) were also maintained that has received citrate buffer on the second day of their birth. A significant increase in blood glucose, glycosylated haemoglobin (HbA1c) and serum insulin levels were observed in NIDDM control rats. Treatment with WS reduced the elevated levels of blood glucose, HbA1c and insulin in the NIDDM rats. An oral glucose tolerance test was also performed in the same groups, in which we found a significant improvement in glucose tolerance in the rats treated with WS. The insulin sensitivity was assessed for both peripheral insulin resistance and hepatic insulin resistance. WS treatment significantly improved insulin sensitivity index (KITT) that was significantly decreased in NIDDM control rats. There was significant rise in homeostasis model assessment of insulin resistance (HOMA-R) in NIDDM control rats whereas WS treatment significantly prevented the rise in HOMA-R in NIDDM-treated rats. Our data suggest that aqueous extract of WS normalizes hyperglycemia in NIDDM rats by improving insulin sensitivity. [source]


In vivo activity of 11,-hydroxysteroid dehydrogenase type 1 and free fatty acid-induced insulin resistance

CLINICAL ENDOCRINOLOGY, Issue 4 2005
K. Mai
Summary Introduction, Free fatty acids (FFAs) induce hepatic insulin resistance and enhance hepatic gluconeogenesis. Glucocorticoids (GCs) also stimulate hepatic gluconeogenesis. The aim of this study was to investigate whether the FFA-induced hepatic insulin resistance is mediated by increased activity of hepatic 11,-hydroxysteroid dehydrogenase type 1 (11,-HSD1), accompanied by elevated hepatic cortisol levels. Methods, Following a 10-h overnight fast, six healthy male volunteers were investigated. A euglycaemic hyperinsulinaemic clamp was performed during lipid or saline infusion. To assess hepatic 11,-HSD1 activity, plasma cortisol levels were measured after oral administration of cortisone acetate during lipid or saline infusion. In addition, 11,-HSD activities were determined in vivo by calculating the urinary ratios of GC metabolites. Results, Lipid infusion increased FFAs (5·41 ± 1·00 vs. 0·48 ± 0·20 mmol/l; P < 0·005) and significantly increased insulin resistance [glucose infusion rate (GIR) 6·02 ± 2·60 vs. 4·08 ± 2·15 mg/kg/min; P < 0·005]. After lipid and saline infusions no changes in 11,-HSD1 activity were found, neither by changes in cortisone acetate to cortisol conversion nor by differences in urinary free cortisol (UFF) or cortisone (UFE), 5,-tetrahydrocortisol (THF), 5,-THF, cortisone (THE), UFF/UFE and (5,-THF + THF)/THE ratios. Conclusions, We found no change in hepatic and whole-body 11,-HSD1 activity during acute FFA-induced insulin resistance. Further studies are necessary to clarify whether 11,-HSD1 in muscle and adipose tissue is influenced by FFAs and whether 11,-HSD1 is involved in other conditions of insulin resistance. [source]