Home About us Contact | |||
Hepatic Extraction (hepatic + extraction)
Selected AbstractsEffect of Piperine, a Major Component of Black Pepper, on the Intestinal Absorption of Fexofenadine and Its Implication on Food,Drug InteractionJOURNAL OF FOOD SCIENCE, Issue 3 2010Ming-Ji Jin ABSTRACT:, The present study aimed to investigate the effect of piperine, a major component of black pepper, on the oral exposure of fexofenadine in rats. Pharmacokinetic parameters of fexofenadine were determined in rats following an oral (10 mg/kg) or intravenous (5 mg/kg) administration of fexofenadine in the presence and absence of piperine (10 or 20 mg/kg, given orally). Compared to the control group given fexofenadine alone, the combined use of piperine increased the oral exposure (AUC) of fexofenadine by 180% to 190% while there was no significant change in,Cmax and,T1/2 of fexofenadine in rats. The bioavailability of fexofenadine was increased by approximately 2-folds via the concomitant use of piperine. Furthermore,,Tmax tends to be increased which might be attributed to the delayed gastric emptying in the presence of piperine. In contrast, piperine did not alter the intravenous pharmacokinetics of fexofenadine, implying that piperine may increase mainly the gastrointestinal absorption of fexofenadine rather than reducing hepatic extraction. In conclusion, piperine significantly enhanced the oral exposure of fexofenadine in rats likely by the inhibition of P-glycoprotein-mediated cellular efflux during the intestinal absorption, suggesting that the combined use of piperine or piperine-containing diet with fexofenadine may require close monitoring for potential drug,diet interactions. [source] Uptake and Dispersion of Metformin in the Isolated Perfused Rat LiverJOURNAL OF PHARMACY AND PHARMACOLOGY: AN INTERNATI ONAL JOURNAL OF PHARMACEUTICAL SCIENCE, Issue 8 2000CHEN-HSI CHOU Although metformin is a widely used oral antihyperglycaemic, the exact mechanisms of its cellular uptake and action remain obscure. In this study the hepatic extraction and disposition kinetics of metformin were investigated by use of an isolated in-situ rat liver preparation. The liver was perfused in single-pass mode with protein-free Krebs bicarbonate medium at a flow rate of 20mLmin,1. During constant infusion with 1 mgL,1 metformin hydrochloride the hepatic uptake of metformin approached equilibrium within 10 min. The steady-state availability, F, determined from the ratio of outflow concentration to input concentration, was 0.99±0.02 (mean±s.d., n=4). The outflow profile of metformin resulting from a bolus injection of 25 ,g into the portal vein, had a sharp peak then a slower declining terminal phase. The mean transit time (MTT; 49.5±14.5, n = 6) and normalized variance (CV2; 4.13±0.05) of the hepatic transit times of metformin were estimated by numerical integration from the statistical moments of the outflow data. The volume of distribution of metformin in the liver (1.58±0.28 mL (g liver),1) was estimated from its MTT. The volume of distribution is greater than the water space of liver, indicating that metformin enters the hepatic aqueous space and becomes distributed among cellular components. The magnitude of CV2 for metformin is greater than for the vascular marker sucrose, suggesting that distribution of metformin into hepatic tissue is not instantaneous. In conclusion, hepatic uptake of metformin is rate-limited by a permeability barrier. Although metformin is accumulated in the liver, the organ does not extract it. [source] Effect of recombinant porcine somatotropin (rpST) on drug disposition in swineJOURNAL OF VETERINARY PHARMACOLOGY & THERAPEUTICS, Issue 1 2010J. C. KAWALEK Kawalek, J.C., Howard, K.D. Effect of recombinant porcine somatotropin (rpST) on drug disposition in swine. J. vet. Pharmacol. Therap.33, 69,75. Treatment of pigs with recombinant porcine somatotropin (rpST) causes a marked increase in feed utilization with increased weight-gain over untreated controls. Physiological parameters such as creatinine clearance were increased by rpST treatment. Clearance of drugs eliminated by hepatic extraction, like indocyanine green (ICG), were also increased by rpST treatment. However, clearance of intravenous (i.v.)-dosed propranolol (PPL) was not affected by rpST treatment and data from oral (p.o.) - dosing was inconclusive because of the low bioavailability, probably because of a high first-pass effect. The very low oral bioavailability indicates that intestinal metabolism of PPL is probably quite high. Analysis of urinary metabolites indicated production of the two phenolic isomers, but there was no metabolite corresponding to N-dealkylase activity; although the latter metabolite could have been eliminated in the bile with subsequent fecal elimination. PPL was an excellent in vitro substrate for measuring hepatic DME activity in vitro; two phenolic and one N-dealkylated metabolite were formed. The overall conclusions regarding this study must be that the effects of rpST on drug bioavailability and elimination were equivocal. As ICG and creatinine clearances were both increased significantly, one cannot rule out the probability that rpST would increase drug elimination in pigs as a result of increased hepatic uptake and/or renal clearance. One can only speculate that clearance of concurrently administered drugs would be increased. This would reduce residue levels, but it might also reduce efficacy. [source] Effect of itraconazole on the pharmacokinetics of everolimus administered by different routes in ratsBIOPHARMACEUTICS AND DRUG DISPOSITION, Issue 9 2009Akira Yokomasu Abstract The effect of itraconazole on the pharmacokinetics of everolimus was investigated in rats. Ten minutes after an intravenous or intraintestinal administration of itraconazole, everolimus was delivered intravenously (0.2,mg/kg) or intraintestinally (0.5,mg/kg). Blood concentrations of everolimus were measured up to 240,min, and pharmacokinetic parameters were calculated. Intraintestinally administered itraconazole (20,mg/kg) significantly increased the area under the concentration,time curve (AUC) of intraintestinally administered everolimus about 4.5-fold, but even at 50,mg/kg did not affect the AUC of intravenously administered everolimus. However, intravenously administered itraconazole (50,mg/kg) increased the AUC of both intraintestinally and intravenously administered everolimus approximately 2-fold. Using a value for hepatic blood flow from the literature (50,ml/min/kg), the apparent intestinal and hepatic extraction of everolimus without itraconazole was calculated as about 80% and 13%, respectively. Intraintestinally administered itraconazole (20,mg/kg) changed the apparent intestinal extraction by 0.26-fold from 0.829 to 0.215, but the hepatic availability of everolimus was almost unchanged after the intravenous or intraintestinal administration of itraconazole even at a dose of 50,mg/kg from 0.871 to 0.923 or 0.867, respectively. In conclusion, intraintestinally administered itraconazole dramatically increased the AUC of everolimus delivered intraintestinally by inhibiting the intestinal first-pass extraction of this drug. Copyright © 2009 John Wiley & Sons, Ltd. [source] Disposition of WR-1065 in the liver of tumor-bearing rats following regional vs systemic administration of amifostineBIOPHARMACEUTICS AND DRUG DISPOSITION, Issue 1 2004Micha Levi Abstract Purpose,Amifostine is a prodrug in which selectivity is largely determined by the preferential formation and uptake of its cytoprotective metabolite, WR-1065, in normal tissues as a result of differences in membrane-bound alkaline phosphatase activity. It was hypothesized that amifostine may be a good candidate for regional drug delivery to the liver because of its large hepatic extraction and total body clearance. Methods,Rat livers were implanted with Walker-256 tumors. The tumor-bearing rats received 15 min infusions of amifostine (200 mg/kg) via the portal vein or the femoral vein. WR-1065 concentrations in the blood, liver and tumor were measured at various times. Results,The WR-1065 tumor portal dosing AUC15,60 was 40% of systemic dosing, and tumor concentrations following portal dosing were one-fifth of that following systemic dosing. The portal dosing WR-1065 liver AUC15,60 was 60% higher than the values for systemic dosing. The liver/tumor concentration ratios of WR-1065 following portal dosing were up to 8-fold higher than the ratio following systemic administration. Unfortunately, systemic exposure to WR-1065 was greater following portal vs systemic amifostine. Conclusions,Amifostine may provide increased liver protection and decreased tumor protection from radio- or chemotherapy when administered by the portal vein. However, portal dosing also increases systemic exposure to WR-1065, which is associated with hypotension. Copyright © 2004 John Wiley & Sons, Ltd. [source] |