Home About us Contact | |||
Hepatic Blood Flow (hepatic + blood_flow)
Selected AbstractsInfluence of beta-2 adrenergic receptor gene polymorphism on the hemodynamic response to propranolol in patients with cirrhosis,HEPATOLOGY, Issue 1 2006Juan Turnes The beta-2-adrenergic receptor (,2- -AR) has several single-nucleotide polymorphisms. These influence the functional response to adrenergic stimulation; genotypes homozygous for Gly16-Glu27 or Gly16-Gln27 alleles (Gly16-Glu/Gln27 haplotypes) are associated with enhanced response, whereas genotypes homozygous for Arg16-Gln27 alleles (Arg16-Gln27) show a decreased response. We hypothesized that gene polymorphisms at the ,2 -AR may influence the hemodynamic response to propranolol in patients with cirrhosis. The ,2 -AR gene polymorphisms were determined by direct sequencing of the polymerase chain reaction (PCR) products in 48 patients with cirrhosis. All patients also had hepatic and systemic hemodynamic studies before and after propranolol administration. Prevalence of Gly16-Glu/Gln27 haplotypes was 29.1%, Arg16-Gln27 haplotype was 16.7%, and 54.2% were compound heterozygotes. Patients with cirrhosis with Gly16-Glu/Gln27 haplotypes had a greater decrease in heart rate, cardiac index, and hepatic blood flow after propranolol administration than those with Arg16-Gln27 haplotype. However, the HVPG response to propranolol was similar in both groups, whereas estimated hepatic sinusoidal resistance increased significantly in Gly16-Glu/Gln27 haplotypes but not in Arg16-Gln27 (+27.1 ± 17.8% vs -17.9 ± 13.9%, P = .042), suggesting that unopposed vasoconstrictive activity at the intrahepatic circulation hinders the fall in HVPG despite enhanced hemodynamic response to propranolol in Gly16-Glu/Gln27 haplotypes. In conclusion, ,2 -AR gene polymorphisms influence the response to beta-blockade. However, HVPG reduction cannot be predicted from polymorphism analysis. Patients with the Gly16-Glu/Gln27 haplotypes may benefit from the association of hepatic vasodilators to propranolol therapy. (HEPATOLOGY 2005;43:34,41.) [source] Low doses of isosorbide mononitrate attenuate the postprandial increase in portal pressure in patients with cirrhosisHEPATOLOGY, Issue 2 2003Lia Bellis Postprandial hyperemia is associated with a significant increase in portal pressure in cirrhosis, which may contribute to progressive dilation and rupture of gastroesophageal varices. In cirrhosis, an insufficient hepatic production of nitric oxide (NO) may impair the expected hepatic vasodilatory response to increased blood flow, further exaggerating the postprandial increase in portal pressure. This study was aimed at investigating whether low doses of an oral NO donor might counteract the postprandial peak in portal pressure. Twenty-three portal hypertensive cirrhotics, 8 of them under propranolol therapy, were randomized to receive orally 5-isosorbide mononitrate (ISMN; 10 mg; n = 11) or placebo (n = 12) and a standard liquid meal 15 minutes later. Hepatic venous pressure gradient (HVPG), mean arterial pressure (MAP), and hepatic blood flow (HBF) were measured at baseline and 15, 30, and 45 minutes after a meal. ISMN significantly attenuated the postprandial increase in portal pressure as compared with placebo (peak HVPG increase: 2.4 ± 1.4 mm Hg vs. 5.2 ± 2.1 mm Hg, P = .002). Percentual increases in HBF were similar in both groups. MAP decreased slightly in ISMN group (,7.5% ± .5%; P < .01 vs. baseline). These effects were also observed in patients on chronic propranolol therapy. In conclusion, hepatic NO supplementation by low doses of ISMN effectively reduces the postprandial increase of portal pressure in cirrhosis, with only a mild effect on arterial pressure. The same was observed in patients receiving propranolol. Our results suggest that therapeutic strategies based on selective hepatic NO delivery may improve the treatment of portal hypertension. [source] Regulatory processes interacting to maintain hepatic blood flow constancy: Vascular compliance, hepatic arterial buffer response, hepatorenal reflex, liver regeneration, escape from vasoconstrictionHEPATOLOGY RESEARCH, Issue 11 2007W. Wayne Lautt Constancy of hepatic blood flow (HBF) is crucial for several homeostatic roles. The present conceptual review focuses on interrelated mechanisms that act to maintain a constant HBF per liver mass. The liver cannot directly control portal blood flow (PF); therefore, these mechanisms largely operate to compensate for PF changes. A reduction in PF leads to reduced intrahepatic distending pressure, resulting in the highly compliant hepatic vasculature passively expelling up to 50% of its blood volume, thus adding to venous return, cardiac output and HBF. Also activated immediately upon reduction of PF are the hepatic arterial buffer response and an HBF-dependent hepatorenal reflex. Adenosine is secreted at a constant rate into the small fluid space of Mall which surrounds the terminal branches of the hepatic arterioles, portal venules and sensory nerves. The concentration of adenosine is regulated by washout into the portal venules. Reduced PFreduces the washout and the accumulated adenosine causes dilation of the hepatic artery, thus buffering the PF change. Adenosine also activates hepatic sensory nerves to cause reflex renal fluid retention, thus increasing circulating blood volume and maintaining cardiac output and PF. If these mechanisms are not able to maintain total HBF, the hemodynamic imbalance results in hepatocyte proliferation, or apoptosis, by a shear stress/nitric oxide-dependent mechanism, to adjust total liver mass to match the blood supply. These mechanisms are specific to this unique vascular bed and provide an excellent example of multiple integrative regulation of a major homeostatic organ. [source] Interaction of Drugs and Chinese Herbs: Pharmacokinetic Changes of Tolbutamide and Diazepam Caused by Extract of Angelica dahuricaJOURNAL OF PHARMACY AND PHARMACOLOGY: AN INTERNATI ONAL JOURNAL OF PHARMACEUTICAL SCIENCE, Issue 8 2000KAZUHISA ISHIHARA The inhibitory effects of Angelica dahurica root extract on rat liver microsomal cytochrome P450 and drug-drug interactions were studied. The 2,- and 16,-hydroxylase activity of testosterone were most strongly inhibited, with 17.2% and 28.5% of their activity remaining, respectively, after oral administration of A. dahurica extract at a 1 g kg,1 dose. 6,-Hydroxylase activity was also inhibited, with 70% of its activity remaining, under the same conditions. In addition, treatment with the extract inhibited the metabolism of tolbutamide, nifedipine and bufuralol. These results showed that the extract inhibited the various isoforms of cytochrome P450 such as CYP2C, CYP3A and CYP2D1. The A. dahurica extract delayed elimination of tolbutamide after intravenous administration at a 10 mg kg,1 dose to rats. Thus, the extract altered the liver intrinsic clearance. It had little effect, however, on the pharmacokinetic parameters of diazepam after intravenous administration at 10 mg kg,1. Since diazepam showed high clearance, it underwent hepatic blood flow rate-limited metabolism. Therefore, the change of intrinsic clearance had little effect on hepatic clearance. However, the Cmax value after oral administration of diazepam with extract treatment was four times that with non-treatment. It was suggested that the first-pass effect was changed markedly by the extract. High-dose (1 g kg,1), but not low dose (0.3 g kg,1), administration of A. dahurica extract increased significantly the duration of rotarod disruption following intravenous administration of diazepam at 5 mg kg,1. It was concluded that administration of A. dahurica extract has the potential to interfere with the metabolism, by liver cytochrome P450, of other drugs. [source] Neuronal nitric oxide synthase immunoreactivity in the guinea-pig liver: distribution and colocalization with neuropeptide Y and calcitonin gene-related peptideLIVER INTERNATIONAL, Issue 6 2001Francisco J. Esteban Abstract:Aims/Background: The innervation pattern of the guinea-pig liver is similar to that of the human liver. However, many aspects of the distribution of the neuronal isoform of the enzyme nitric oxide synthase (nNOS) in the guinea-pig liver and its colocalization with neuropeptides remain to be elucidated. Methods: The distribution of nNOS was studied in fixed guinea-pig liver by light microscopic immunohistochemistry. Confocal analysis was used to determine its colocalization with neuropeptide Y (NPY) or calcitonin gene-related peptide (CGRP). Results: nNOS-immunoreactive (nNOS-IR) nerves were observed in relation to hilar and interlobar vessels and in Glisson's capsule. A few nNOS-IR ganglia were observed in the extrahepatic bile duct and close to the interlobar portal triads. In addition, nNOS-IR fibers were located in the interlobular portal triads and pervading the parenchyma. Moreover, nNOS-IR nerves were demonstrated for the first time in the larger central veins and in the hepatic vein. nNOS-NPY and nNOS-CGRP colocalizations were detected in the fibromuscular layer of the bile duct and periductal plexus, respectively. Conclusions: These results support the phylogenetic conservation of the nNOS-IR hepatic innervation and its possible contribution to the regulation of hepatic blood flow and certain hepatic functions. [source] Continuous infusion of prostaglandin E1 via the superior mesenteric artery can prevent hepatic injury in hepatic artery interruption through passive portal oxygenationLIVER INTERNATIONAL, Issue 2 2000Tsutomu Sato Abstract:Aims/Background: Hepatic artery interruption (HAI) causes severe ischemic liver damage, especially following hepatopancreatobiliary surgery. In order to inhibit a decrease in oxygen delivery after HAI, continuous infusion of PGE1 via the superior mesenteric artery (SMA) was administered in pigs and changes in hepatic blood flow and oxygen delivery were investigated. Furthermore, its effectiveness in the prevention of liver injury was evaluated by histology and serum enzyme levels. Methods: Animals were subjected to HAI without PGE1 infusion (control group n=6) and to continuous infusion of PGE1 (0.02 ,g/kg/min) into the SMA (PGE1 group n=6). Results and Conclusion: PGE1 infusion via the SMA not only increased the portal blood flow but also elevated the oxygen content of the portal blood. The reduction in oxygen delivery to the liver was 50% in the control group, and only 13% in the PGE1 group. Serum aspartate aminotransferase (AST) and lactate dehydrogenase (LDH) levels 24 h after HAI in the control group were 3415±1283 IU/L and 9839±2959 respectively while in the PGE1 group they were 939±426 IU/L and 5510±1545 IU/L respectively. Histological examination showed massive necrosis in the control group at 72 h but only focal liver cell necrosis in the PGE1 group. Based on this finding and the fact that this treatment can be performed easily and safely, continuous infusion of PGE1 via the SMA may be a useful intervention to prevent severe liver damage after hepatic artery interruption. [source] KICG value, a reliable real-time estimator of graft function, accurately predicts outcomes in adult living-donor liver transplantation,LIVER TRANSPLANTATION, Issue 4 2006Tomohide Hori Reliable monitoring enabling evaluation of graft function is crucial after living-donor liver transplantation (LDLT). A method to identify poor graft function at an early postoperative period would allow opportune intensive clinical management to bring about further improvements in LDLT outcomes. This study assessed the reliability of the indocyanine green (ICG) elimination rate constant (KICG) value as an estimator of graft function and determined the actual temporal changes of KICG after LDLT. KICG values were measured using a noninvasive method in 30 adult recipients up to 28 days after LDLT. The receptor index (LHL15) based on liver scintigraphy, and graft parenchymal damage score based on histopathological findings were evaluated after LDLT and correlated well with simultaneous KICG. Thus, KICG measured by noninvasive method was confirmed as accurately evaluating graft function. Changes of KICG after LDLT in recipients with good graft function were maintained, after some falls in the early periods, and had a significant difference compared with those for recipients without good graft function; moreover, there were already significant differences in KICG 24 hours after LDLT. Mean transit time reflecting systemic hemodynamics revealed that recipients without good outcomes fell into an unstable systemic hemodynamic state, and effective hepatic blood flow has a large influence on liver regeneration after LDLT. In conclusion, we suggested that KICG values can predict clinical outcomes at the early postoperative period after LDLT by sharply reflecting the influence of systemic dynamics on splanchnic circulation. Liver Transpl 12:605,613, 2006. © 2006 AASLD. [source] Negative impact of systemic catecholamine administration on hepatic blood perfusion after porcine liver transplantationLIVER TRANSPLANTATION, Issue 2 2005Arianeb Mehrabi Catecholamines are often administered during and after liver transplantation (LTx) to support systemic perfusion and to increase organ oxygen supply. Some vasoactive agents can compromise visceral organ perfusion. We followed the hypothesis that the vasculature of transplanted livers presents with a higher sensitivity, which leads to an increased vulnerability for flow derangement after application of epinephrine (Epi) or norepinephrine (NorEpi). Hepatic macroperfusion and microperfusion during systemic Epi or NorEpi infusion were measured by Doppler flow and thermodiffusion probes in porcine native, denervated, and transplanted livers (n = 16 in each group). Epi or NorEpi were infused (n = 8 in each subgroup) in predefined dosages (low dose = 5 ,g/kg/minute and high dose = 10 ,g/kg/minute) over 240 minutes. Systemic cardiocirculatory parameters were monitored continuously. Hepatic perfusion data were compared between all groups at comparable time points and dosages. In all native, denervated, and transplanted liver groups, Epi and NorEpi induced an inconsistent rise of mean arterial pressure and heart rate shortly after onset of infusion in both dosages compared with baseline. No significant differences of cardiovascular parameters at comparable time points were observed. In native livers, Epi and NorEpi induced only temporary alterations of hepatic macrocirculation and microcirculation, which returned to baseline 2 hours after onset of infusion. No significant alterations of hepatic blood flow were detected after isolated surgical denervation of the liver. By contrast, transplanted livers showed a progressive decline of hepatic macrocirculation (33,75% reduction) and microcirculation (39,58% reduction) during catecholamine infusions in a dose-dependent fashion. Characteristics of liver blood flow impairment were comparable for both vasoactive agents. In conclusion, pronounced disturbances of hepatic macrocirculation and microcirculation were observed during systemic Epi and NorEpi infusion after LTx compared with native and denervated livers. Microcirculation disturbances after LTx might be explained by impairment of hepatic blood flow regulation caused by an increased sensitivity of hepatic vasculature after ischemia-reperfusion and by lengthening of vasopressor effects caused by reduced hepatocyte metabolism. Clinicians should be aware of this potentially hazardous effect. Therefore, application of catecholamines after clinical LTx should be indicated carefully. (Liver Transpl 2005;11:174,187.) [source] Impairment of Hepatic Microcirculation in Fatty LiverMICROCIRCULATION, Issue 6 2003SAMIA IJAZ ABSTRACT Fatty liver or hepatic steatosis, which is the result of the abnormal accumulation of triacylglycerol within the cytoplasm of hepatocytes, is a common histological finding in human liver biopsy specimens that is attributed to the effects of alcohol excess, obesity, diabetes, or drugs. There is a general consensus that fatty liver compromises hepatic microcirculation, the common exchange network upon which hepatic arterial and portal inflows converge, regardless of underlying etiology. A significant reduction in hepatic microcirculation has been observed in human fatty donor livers and in experimental models of hepatic steatosis. There is an inverse correlation between the degree of fat infiltration and both total hepatic blood flow and flow in microcirculation. Fatty accumulation in the cytoplasm of the hepatocytes is associated with an increase in the cell volume that reduces the size of the hepatic sinusoid space by 50% compared with a normal liver and may result in partial or complete obstruction of the hepatic sinusoid space. As a result of impaired hepatic microcirculation, the hepatocytes of the fatty liver have reduced tolerance against ischemia-reperfusion injury, which affects about 25% of the donors for liver transplantation because severe steatosis is associated with a high risk of primary nonfunction after liver transplantation. [source] Liver Perfusion in Sepsis, Septic Shock, and Multiorgan FailureTHE ANATOMICAL RECORD : ADVANCES IN INTEGRATIVE ANATOMY AND EVOLUTIONARY BIOLOGY, Issue 6 2008Herbert Spapen Abstract Sepsis causes significant alterations in the hepatic macro- and microcirculation. Diverging views exist on global hepatic blood flow during experimental sepsis because of the large variety in animal and sepsis models. Fluid-resuscitated clinical sepsis is characterized by ongoing liver ischemia due to a defective oxygen extraction despite enhanced perfusion. The effects of vasoactive agents on the hepatosplanchnic circulation are variable, mostly anecdotal, and depend on baseline perfusion, time of drug administration, and use of concomitant medication. Microvascular blood flow disturbances are thought to play a pivotal role in the development of sepsis-induced multiorgan failure. Redistribution of intrahepatic blood flow in concert with a complex interplay between sinusoidal endothelial cells, liver macrophages, and passing leukocytes lead to a decreased perfusion and blood flow velocity in the liver sinusoids. Activation and dysfunction of the endothelial cell barrier with subsequent invasion of neutrophils and formation of microthrombi further enhance liver tissue ischemia and damage. Substances that regulate (micro)vascular tone, such as nitric oxide, endothelin-1, and carbon monoxide, are highly active during sepsis. Possible interactions between these mediators are not well understood, and their therapeutic manipulation produces equivocal or disappointing results. Whether and how standard resuscitation therapy influences the hepatic microvascular response to sepsis is unknown. Indirect evidence supports the concept that improving the microcirculation may prevent or ameliorate sepsis-induced organ failure. Anat Rec, 291:714,720, 2008. © 2008 Wiley-Liss, Inc. [source] Prospective Evaluation of Intraoperative Hemodynamics in Liver Transplantation with Whole, Partial and DCD GraftsAMERICAN JOURNAL OF TRANSPLANTATION, Issue 8 2010M. Sainz-Barriga The interaction of systemic hemodynamics with hepatic flows at the time of liver transplantation (LT) has not been studied in a prospective uniform way for different types of grafts. We prospectively evaluated intraoperative hemodynamics of 103 whole and partial LT. Liver graft hemodynamics were measured using the ultrasound transit time method to obtain portal (PVF) and arterial (HAF) hepatic flow. Measurements were recorded on the native liver, the portocaval shunt, following reperfusion and after biliary anastomosis. After LT HAF and PVF do not immediately return to normal values. Increased PVF was observed after graft implantation. Living donor LT showed the highest compliance to portal hyperperfusion. The amount of liver perfusion seemed to be related to the quality of the graft. A positive correlation for HAF, PVF and total hepatic blood flow with cardiac output was found (p = 0.001). Portal hypertension, macrosteatosis >30%, warm ischemia time and cardiac output, independently influence the hepatic flows. These results highlight the role of systemic hemodynamic management in LT to optimize hepatic perfusion, particularly in LDLT and split LT, where the highest flows were registered. [source] Effect of itraconazole on the pharmacokinetics of everolimus administered by different routes in ratsBIOPHARMACEUTICS AND DRUG DISPOSITION, Issue 9 2009Akira Yokomasu Abstract The effect of itraconazole on the pharmacokinetics of everolimus was investigated in rats. Ten minutes after an intravenous or intraintestinal administration of itraconazole, everolimus was delivered intravenously (0.2,mg/kg) or intraintestinally (0.5,mg/kg). Blood concentrations of everolimus were measured up to 240,min, and pharmacokinetic parameters were calculated. Intraintestinally administered itraconazole (20,mg/kg) significantly increased the area under the concentration,time curve (AUC) of intraintestinally administered everolimus about 4.5-fold, but even at 50,mg/kg did not affect the AUC of intravenously administered everolimus. However, intravenously administered itraconazole (50,mg/kg) increased the AUC of both intraintestinally and intravenously administered everolimus approximately 2-fold. Using a value for hepatic blood flow from the literature (50,ml/min/kg), the apparent intestinal and hepatic extraction of everolimus without itraconazole was calculated as about 80% and 13%, respectively. Intraintestinally administered itraconazole (20,mg/kg) changed the apparent intestinal extraction by 0.26-fold from 0.829 to 0.215, but the hepatic availability of everolimus was almost unchanged after the intravenous or intraintestinal administration of itraconazole even at a dose of 50,mg/kg from 0.871 to 0.923 or 0.867, respectively. In conclusion, intraintestinally administered itraconazole dramatically increased the AUC of everolimus delivered intraintestinally by inhibiting the intestinal first-pass extraction of this drug. Copyright © 2009 John Wiley & Sons, Ltd. [source] Decreased hepatic RBP4 secretion is correlated with reduced hepatic glucose production but is not associated with insulin resistance in patients with liver cirrhosisCLINICAL ENDOCRINOLOGY, Issue 1 2009Matthias J. Bahr Summary Objective, Patients with liver cirrhosis have a high incidence of insulin resistance and diabetes. This study was designed to determine circulating levels and hepatic production of retinol-binding protein 4 (RBP4) in relation to parameters of hepatic and systemic metabolism in patients with liver cirrhosis. Design and method, Circulating RBP4 levels were measured in 19 patients with liver cirrhosis at different clinical stages of the disease and in 20 age-, sex- and body mass index (BMI)-matched controls. Hepatic production rates of RBP4 and glucose were assessed by measuring the arterial hepatic venous concentration difference together with hepatic blood flow. Insulin resistance was determined by the Quantitative Insulin Sensitivity Check Index (QUICKI) and the homeostasis model assessment of insulin resistance (HOMA-IR), energy expenditure by indirect calorimetry and body composition by bioelectrical impedance analysis (BIA). Results, Compared with controls, RBP4 levels in cirrhosis were decreased (8·1 ± 1·8 vs. 22·6 ± 2·4 mg/l, P < 0·001) due to decreased hepatic production (P < 0·05). RBP4 correlated with hepatic protein synthesis capacity (P < 0·01), but not with insulin resistance, energy expenditure, BMI or body fat mass. Plasma RBP4 correlated with hepatic glucose production (P < 0·05). Conclusions, These data demonstrate that RBP4 in cirrhosis (i) is decreased due to reduced hepatic production, (ii) is not associated with insulin resistance, and (iii) might have a beneficial role by decreasing hepatic glucose production and could thus also be regarded as a hepatokine. [source] Intestinal and hepatic metabolism of glutamine and citrulline in humansTHE JOURNAL OF PHYSIOLOGY, Issue 2 2007Marcel C. G. Van De Poll Glutamine plays an important role in nitrogen homeostasis and intestinal substrate supply. It has been suggested that glutamine is a precursor for arginine through an intestinal,renal pathway involving inter-organ transport of citrulline. The importance of intestinal glutamine metabolism for endogenous arginine synthesis in humans, however, has remained unaddressed. The aim of this study was to investigate the intestinal conversion of glutamine to citrulline and the effect of the liver on splanchnic citrulline metabolism in humans. Eight patients undergoing upper gastrointestinal surgery received a primed continuous intravenous infusion of [2- 15N]glutamine and [ureido- 13C,2H2]citrulline. Arterial, portal venous and hepatic venous blood were sampled and portal and hepatic blood flows were measured. Organ specific amino acid uptake (disposal), production and net balance, as well as whole body rates of plasma appearance were calculated according to established methods. The intestines consumed glutamine at a rate that was dependent on glutamine supply. Approximately 13% of glutamine taken up by the intestines was converted to citrulline. Quantitatively glutamine was the only important precursor for intestinal citrulline release. Both glutamine and citrulline were consumed and produced by the liver, but net hepatic flux of both amino acids was not significantly different from zero. Plasma glutamine was the precursor of 80% of plasma citrulline and plasma citrulline in turn was the precursor of 10% of plasma arginine. In conclusion, glutamine is an important precursor for the synthesis of arginine after intestinal conversion to citrulline in humans. [source] |