Heparan

Distribution by Scientific Domains
Distribution within Life Sciences

Terms modified by Heparan

  • heparan sulphate
  • heparan sulphate proteoglycan

  • Selected Abstracts


    Spatially and temporally regulated expression of specific heparan sulfate epitopes in the developing mouse olfactory system

    DEVELOPMENT GROWTH & DIFFERENTIATION, Issue 2 2010
    Jun Takatoh
    Heparan sulfate (HS) comprises a structurally diverse group of glycosaminoglycans present ubiquitously on cell surfaces and in the extracellular matrix. The spatially and temporally regulated expression of specific HS structures is essential for various developmental processes in the nervous system but their distributions in the mouse olfactory system have not been explored. Here, we examined the spatiotemporal distribution of particular HS species in the developing mouse olfactory system using three structure-specific monoclonal antibodies (HepSS-1, JM403 and NAH46). The major findings were as follows. (i) During olfactory bulb morphogenesis, the HepSS-1 epitope was strongly expressed in anterior telencephalic cells and coexpressed with fibroblast growth factor receptor 1. (ii) In early postnatal glomeruli, the JM403 epitope was expressed at different levels among individual glomeruli. The expression pattern and levels of the JM403 epitope were both associated with those of ephrin-A3. (iii) In the vomeronasal system, the JM403 epitope was expressed in all vomeronasal axons but became increasingly restricted to vomeronasal axons terminating in the anterior region of the accessory olfactory bulb by 3 weeks of age. Our results demonstrate that each HS epitope exhibits a unique expression pattern during the development of the mouse olfactory system. Thus, each HS epitope is closely associated with particular developmental processes of the olfactory system and might have a particular role in developmental events. [source]


    Combinatorial expression patterns of heparan sulfate sulfotransferases in zebrafish: II.

    DEVELOPMENTAL DYNAMICS, Issue 12 2006
    The 6- O -sulfotransferase family
    Abstract Heparan sulfate (HS) is an unbranched chain of repetitive disaccharides, which specifically binds ligands when attached to the cell surface or secreted extracellularly. HS chains contain sulfated domains termed the HS fine structure, which gives HS specific binding affinities for extracellular ligands. HS 6- O -sulfotransferases (6-OST) catalyze the transfer of sulfate groups to the 6- O position of glucosamine residues of HS. We report here the characterization and developmental expression analysis of the 6-OST gene family in the zebrafish. The zebrafish 6-OST gene family consists of four conserved vertebrate orthologues, including a gene duplication specific to zebrafish. We examined the mRNA expression patterns in several tissues/organs throughout early zebrafish development, including early cleavage stages, eyes, somites, brain, internal organ primordial, and pectoral fin development. Members of the 6-OST gene family have spatially and temporally distinct restricted expression, suggesting in vivo functional differences exist between members of this family. Developmental Dynamics 235:3432,3437, 2006. © 2006 Wiley-Liss, Inc. [source]


    Heparan sulfate proteoglycans in experimental models of diabetes: a role for perlecan in diabetes complications

    DIABETES/METABOLISM: RESEARCH AND REVIEWS, Issue 6 2001
    Karin Conde-Knape
    Abstract Proteoglycans are ubiquitous extracellular proteins that serve a variety of functions throughout the organism. Unlike other glycoproteins, proteoglycans are classified based on the structure of the glycosaminoglycan carbohydrate chains, not the core proteins. Perlecan, a member of the heparan sulfate proteoglycan (HSPG) family, has been implicated in many complications of diabetes. Decreased levels of perlecan have been observed in the kidney and in other organs, both in patients with diabetes and in animal models. Perlecan has an important role in the maintenance of the glomerular filtration barrier. Decreased perlecan in the glomerular basement membrane has a central role in the development of diabetic albuminuria. The involvement of this proteoglycan in diabetic complications and the possible mechanisms underlying such a role have been addressed using a variety of models. Due to the importance of nephropathy among diabetic patients most of the studies conducted so far relate to diabetes effects on perlecan in different types of kidney cells. The various diabetic models used have provided information on some of the mechanisms underlying perlecan's role in diabetes as well as on possible factors affecting its regulation. However, many other aspects of perlecan metabolism still await full elucidation. The present review provides a description of the models that have been used to study HSPG and in particular perlecan metabolism in diabetes and some of the factors that have been found to be important in the regulation of perlecan. Copyright © 2001 John Wiley & Sons, Ltd. [source]


    Heparin and Heparan Sulfate Biosynthesis

    IUBMB LIFE, Issue 4 2002
    Kazuyuki Sugahara
    Abstract Heparan sulfate is one of the most informationally rich biopolymers in Nature. Its simple sugar backbone is variously modified to different degrees depending on the cellular conditions. Thus, it matures to have an enormously complicated structure, which most likely exhibits a considerable number of unique overlapping sequences with peculiar sulfation profiles. Such sequences are recognized by specific complementary proteins, which form a huge group of "heparin-binding proteins," and the sugar sequences in turn support unique functions of the respective proteins through specific interactions. The heparan sulfate sequences are not directly encoded by genes, but are created by elaborate biosynthetic mechanisms, which ensure the generation of these indispensable sequences. In heparan sulfate biosynthesis, the tetrasaccharide sequence (GlcA-Gal-Gal-Xyl-), designated the protein linkage region, is first assembled on a specific Ser residue at the glycosaminoglycan attachment site of a core protein. A heparan sulfate chain is then polymerized on this fragment by alternate additions of GlcNAc and GlcA through the actions of glycosyltransferases with overlapping specificities encoded by the tumor suppressor EXT family genes. Then follow various modifications by N -deacetylation and N -sulfation of glucosamine, C5-epimerization of GlcA and multiple O -sulfations of the component sugars. Recent studies have achieved purification of several, and molecular cloning of most, of the enzymes responsible for these reactions. Some of these enzymes are bifunctional. The availability of cDNA probes has facilitated elucidation of the crystal structures for two of the biosynthetic enzymes, demonstration of their intracellular location, and their occurrence in complexes to achieve rapid and efficient synthesis of complex sugar sequences. Genomic structure and transcript analysis have shown the existence of multiple isoforms for most of the sulfotransferases. Many aspects of the heparan sulfate biosynthetic scheme are shared by the structural analog heparin, which is synthesized in mast cells and some other mammalian cells and is several-fold higher degree of polymerization and more extensive modification than heparan sulfate. [source]


    Purification and characterization of heparan sulfate from human primary osteoblasts

    JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 5 2009
    Sadasivam Murali
    Abstract Heparan sulfate (HS) is a linear, highly variable, highly sulfated glycosaminoglycan sugar whose biological activity largely depends on internal sulfated domains that mediate specific binding to an extensive range of proteins. In this study we employed anion exchange chromatography, molecular sieving and enzymatic cleavage on HS fractions purified from three compartments of cultured osteoblasts,soluble conditioned media, cell surface, and extracellular matrix (ECM). We demonstrate that the composition of HS chains purified from the different compartments is structurally non-identical by a number of parameters, and that these differences have significant ramifications for their ligand-binding properties. The HS chains purified of conditioned medium had twice the binding affinity for FGF2 when compared with either cell surface or ECM HS. In contrast, similar binding of BMP2 to the three types of HS was observed. These results suggest that different biological compartments of cultured cells have structurally and functionally distinct HS species that help to modulate the flow of HS-dependent factors between the ECM and the cell surface. J. Cell. Biochem. 108: 1132,1142, 2009. © 2009 Wiley-Liss, Inc. [source]


    Occlusal hypofunction causes changes of proteoglycan content in the rat periodontal ligament

    JOURNAL OF PERIODONTAL RESEARCH, Issue 1 2001
    S. Kaneko
    The biological functions of proteoglycans and glycosaminoglycans are closely associated with mechanical stress on the tissue. In order to reveal the relationship between proteoglycans in the periodontal ligament and mechanical stress such as occlusal stimuli, occlusal hypofunction of rat unilateral mandibular molars was induced by extraction of the opposing first, second and third maxillary molars. Immunohistochemical analyses were performed using antibodies for chondroitin sulfate, decorin, biglycan, heparan sulfate and keratan sulfate, and hyaluronic acid-binding protein. Chondroitin sulfate, observed more strongly in the cervical side than in the apical side of the periodontal ligament of the unextracted sides of mandible, and uniformly present in the extracellular matrix of the periodontal ligament, decreased significantly from 1 wk post-extraction of the antagonists, with a decrease in thickness and disarrangement in fibrous components. Decorin core protein, uniformly present in the periodontal ligament of the unextracted sides, decreased as early on as 2 d post-extraction. Heparan sulfate, mainly localized on the cell surface of vascular endothelial cells and osteoclastic cells as well as in the extracellular matrix of the unextracted sides, decreased significantly in association with the decreased number of blood vessels and osteoclastic cells as early on as 2 d post-extraction. Biglycan, keratan sulfate and hyaluronic acid, uniformly distributed in the periodontal ligament of the unextracted sides, showed little change after the extraction. These results demonstrate that occlusal hypofunction causes tissue remodeling of the periodontal ligament, with a significant decrease of chondroitin sulfate, decorin and heparan sulfate. [source]


    Assessment of the role of heparan sulfate in high molecular weight kininogen binding to human umbilical vein endothelial cells

    JOURNAL OF THROMBOSIS AND HAEMOSTASIS, Issue 11 2003
    L.P. Fernando
    Summary., The assembly and activation of the kinin forming system components on human umbilical vein endothelial cells (HUVEC) have been studied in great detail. Proteins such as gC1qR, cytokeratin-1 and u-PAR have been identified to be responsible for Zn2+ -dependent binding of high molecular weight kininogen (HK) to HUVEC. Heparan sulfate has also been shown to have a major role in Zn2+ -dependent binding of HK to the endothelial cell line, Ea.hy 926. In this study, we have analyzed the possible contribution of heparan sulfate to high molecular weight kininogen binding to HUVEC using multiple approaches. The presence of heparan sulfate on HUVEC was analyzed by staining with an antibody specific for heparan sulfate. Incubation of the cells with bacterial heparinases removed the heparan sulfate from the cell surface to the level seen with a control antibody, however, the Zn2+ -dependent binding of HK was not affected. Further, blocking of heparan sulfate with a specific antibody to heparan sulfate even after digestion with heparinases did not reduce HK binding whereas antibodies to the proteins gC1qR and cytokeratin-1 consistently reduced the binding of HK to the endothelial cells. The binding intensities of FITC-labeled HK were similar in heparinase-treated and -untreated HUVEC. The rate of kallikrein formation by the assembly of factor XII, HK and PK were similar in both heparinase-treated and non-treated HUVEC. All of these data indicate that heparan sulfate does not contribute significantly to HK binding to HUVEC. [source]


    Coexpression of heparanase, basic fibroblast growth factor and vascular endothelial growth factor in human esophageal carcinomas

    PATHOLOGY INTERNATIONAL, Issue 8 2004
    Shuji Mikami
    Heparan sulfate (HS), which is degraded by heparanase, plays an important role in cell adhesion, insolubility of the extracellular matrix (ECM) and as a reservoir for various growth factors such as basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF). In the present study, we examined the immunohistochemical expression of heparanase, bFGF and VEGF, and evaluated the correlation between their expression and microvessel density (MVD) in human esophageal carcinomas. Heparanase, bFGF and VEGF were immunolocalized predominantly to the carcinoma cells, but they were also localized to the endothelial cells of microvessels near the carcinoma cell nests. In carcinomas with invasion of the muscular layer or adventitia, heparanase staining was stronger at the invasive areas of carcinomas than the intraepithelial spread. Expression of heparanase and bFGF and the degree of MVD were associated, with, tumor, invasion,, lymph, node, metastasis, and pathological stages. Cases with positive staining for heparanase, bFGF or VEGF tended to have a higher MVD than those without staining, and carcinomas with concomitant expression of heparanase, bFGF and VEGF showed the highest MVD. The level of heparanase mRNA expression was directly correlated with the MVD. In addition, heparanase-positive cases had a higher positive ratio of bFGF and VEGF compared with the heparanase-negative cases. These data suggest the possibility that heparanase may contribute to not only cancer cell invasion but also angiogenesis probably through degradation of HS in the ECM and release of bFGF and VEGF from the HS-containing ECM. [source]


    Heparan Sulfate Accumulation with A, Deposits in Alzheimer's Disease and Tg2576 Mice is Contributed by Glial Cells

    BRAIN PATHOLOGY, Issue 4 2008
    Paul O'Callaghan
    Abstract Amyloid ,-peptide (A,) plaques, one of the major neuropathological lesions in Alzheimer's disease (AD), can be broadly subdivided into two morphological categories: neuritic and diffuse. Heparan sulfate (HS) and HS proteoglycans (HSPGs) are codeposits of multiple amyloidoses, including AD. Although HS has been considered a limiting factor in the initiation of amyloid deposition, the pathological implications of HS in A, deposits of AD remain unclear. In this study, immunohistochemistry combined with fluorescence and confocal microscopy was employed to gain deeper insight into the accumulation of HS with A, plaques in sporadic and familial AD. Here we demonstrate that HS preferentially accumulated around the A,40 dense cores of neuritic plaques, but was largely absent from diffuse A,42 plaques, suggesting that A,42 deposition may occur independently of HS. A codeposition pattern of HS with A, deposits in Tg2576 mice was also examined. We identified the membrane-bound HSPGs, glypican-1 (GPC1) and syndecan-3 (SDC3), in glial cells associated with A, deposits, proximal to sites of HS accumulation. In mouse primary glial cultures, we observed increased levels of GPC1 and SDC3 following A, stimulation. These results suggest that HS codeposits with A,40 in neuritic plaques and is mainly derived from glial cells. [source]


    Sanfilippo B in an elderly female psychiatric patient: a rare but relevant diagnosis in presenile dementia

    ACTA PSYCHIATRICA SCANDINAVICA, Issue 2 2010
    W. M. A. Verhoeven
    Verhoeven WMA, Csepán R, Marcelis CLM, Lefeber DJ, Egger JIM, Tuinier S. Sanfilippo B in an elderly female psychiatric patient: a rare but relevant diagnosis in presenile dementia. Objective:, Sanfilippo B is a rare autosomal recessive mucopolysaccharidosis (MPS IIIB) caused by a deficiency of N -acetyl-,-D-glucosaminidase (NAGLU). Method:, A mild mentally retarded elderly female patient is described with a slowly progressive dementia who had given birth to a daughter who developed normally. Results:, Metabolic screening revealed an enhanced concentration of heparan sulfate in urine. Enzymatic assay demonstrated deficiency of N -acetyl-,-D-glucosaminidase. Mutations in the NAGLU gene were found. One mentally retarded and hospitalized elder brother was also found to have MPS IIIB, whereas a second brother, who had died earlier, is suspected to have had the same metabolic disorder. Prior to the development of dementia, both the patient and her brother showed autistic like features, signs of ideomotor apraxia and weakness in verbal comprehension. Conclusion:, Screening for metabolic disorders, in particular MPSes, should always be considered in patients with a history of mental deficit and dementia or progressive functional decline. [source]


    Spatially and temporally regulated expression of specific heparan sulfate epitopes in the developing mouse olfactory system

    DEVELOPMENT GROWTH & DIFFERENTIATION, Issue 2 2010
    Jun Takatoh
    Heparan sulfate (HS) comprises a structurally diverse group of glycosaminoglycans present ubiquitously on cell surfaces and in the extracellular matrix. The spatially and temporally regulated expression of specific HS structures is essential for various developmental processes in the nervous system but their distributions in the mouse olfactory system have not been explored. Here, we examined the spatiotemporal distribution of particular HS species in the developing mouse olfactory system using three structure-specific monoclonal antibodies (HepSS-1, JM403 and NAH46). The major findings were as follows. (i) During olfactory bulb morphogenesis, the HepSS-1 epitope was strongly expressed in anterior telencephalic cells and coexpressed with fibroblast growth factor receptor 1. (ii) In early postnatal glomeruli, the JM403 epitope was expressed at different levels among individual glomeruli. The expression pattern and levels of the JM403 epitope were both associated with those of ephrin-A3. (iii) In the vomeronasal system, the JM403 epitope was expressed in all vomeronasal axons but became increasingly restricted to vomeronasal axons terminating in the anterior region of the accessory olfactory bulb by 3 weeks of age. Our results demonstrate that each HS epitope exhibits a unique expression pattern during the development of the mouse olfactory system. Thus, each HS epitope is closely associated with particular developmental processes of the olfactory system and might have a particular role in developmental events. [source]


    Cloning and characterization of cDNA for syndecan core protein in sea urchin embryos

    DEVELOPMENT GROWTH & DIFFERENTIATION, Issue 5 2000
    Kazuo Tomita
    The cDNA for the core protein of the heparan sulfate proteoglycan, syndecan, of embryos of the sea urchin Anthocidaris crassispina was cloned and characterized. Reverse transcription,polymerase chain reaction (RT-PCR) was used with total ribonucleic acid (RNA) from late gastrula stage embryos and degenerate primers for conserved regions of the core protein, to obtain a 0.1 kb PCR product. A late gastrula stage cDNA library was then screened using the PCR product as a probe. The clones obtained contained an open reading frame of 219 amino acid residues. The predicted product was 41.6% identical to mouse syndecan-1 in the region spanning the cytoplasmic and transmembrane domains. Northern analysis showed that the transcripts were present in unfertilized eggs and maximum expression was detected at the early gastrula stage. Syndecan mRNA was localized around the nuclei at the early cleavage stage, but was then found in the ectodermal cells of the gastrula embryos. Western blotting analysis using the antibody against the recombinant syndecan showed that the proteoglycan was present at a constant level from the unfertilized egg stage through to the pluteus larval stage. Immunostaining revealed that the protein was expressed on apical and basal surfaces of the epithelial wall in blastulae and gastrulae. [source]


    Extracellular interactome of the FGF receptor,ligand system: Complexities and the relative simplicity of the worm

    DEVELOPMENTAL DYNAMICS, Issue 2 2009
    Urszula M. Polanska
    Abstract Fibroblast growth factors (FGFs) and their receptors (FGFRs) regulate a multitude of biological functions in embryonic development and in adult. A major question is how does one family of growth factors and their receptors control such a variety of functions? Classically, specificity was thought to be imparted by alternative splicing of the FGFRs, resulting in isoforms that bind specifically to a subset of the FGFs, and by different saccharide sequences in the heparan sulfate proteoglycan (HSPG) co-receptor. A growing number of noncanonical co-receptors such as integrins and neural cell adhesion molecule (NCAM) are now recognized as imparting additional complexity to classic FGFR signaling. This review will discuss the noncanonical FGFR ligands and speculate on the possibility that they provide additional and alternative means to determining the functional specificity of FGFR signaling. We will also discuss how invertebrate models such as C. elegans may advance our understanding of noncanonical FGFR signaling. Developmental Dynamics 238:277,293, 2009. © 2008 Wiley-Liss, Inc. [source]


    Redundant function of the heparan sulfate 6-O-endosulfatases Sulf1 and Sulf2 during skeletal development

    DEVELOPMENTAL DYNAMICS, Issue 2 2008
    Andreas Ratzka
    Abstract Modification of the sulfation pattern of heparan sulfate (HS) during organ development is thought to regulate binding and signal transduction of several growth factors. The secreted sulfatases, Sulf1 and Sulf2, desulfate HS on 6-O-positions extracellularly. We show that both sulfatases are expressed in overlapping patterns during embryonic skeletal development. Analysis of compound mutants of Sulf1 and Sulf2 derived from gene trap insertions and targeted null alleles revealed subtle but distinct skeletal malformations including reduced bone length, premature vertebrae ossification and fusions of sternebrae and tail vertebrae. Molecular analysis of endochondral ossification points to a function of Sulf1 and Sulf2 in delaying the differentiation of endochondral bones. Penetrance and severity of the phenotype increased with reduced numbers of functional alleles indicating redundant functions of both sulfatases. The mild skeletal phenotype of double mutants suggests a role for extracellular modification of 6-O-sulfation in fine-tuning rather than regulating the development of skeletal structures. Developmental Dynamics 237:339,353, 2008. © 2008 Wiley-Liss, Inc. [source]


    Combinatorial expression patterns of heparan sulfate sulfotransferases in zebrafish: II.

    DEVELOPMENTAL DYNAMICS, Issue 12 2006
    The 6- O -sulfotransferase family
    Abstract Heparan sulfate (HS) is an unbranched chain of repetitive disaccharides, which specifically binds ligands when attached to the cell surface or secreted extracellularly. HS chains contain sulfated domains termed the HS fine structure, which gives HS specific binding affinities for extracellular ligands. HS 6- O -sulfotransferases (6-OST) catalyze the transfer of sulfate groups to the 6- O position of glucosamine residues of HS. We report here the characterization and developmental expression analysis of the 6-OST gene family in the zebrafish. The zebrafish 6-OST gene family consists of four conserved vertebrate orthologues, including a gene duplication specific to zebrafish. We examined the mRNA expression patterns in several tissues/organs throughout early zebrafish development, including early cleavage stages, eyes, somites, brain, internal organ primordial, and pectoral fin development. Members of the 6-OST gene family have spatially and temporally distinct restricted expression, suggesting in vivo functional differences exist between members of this family. Developmental Dynamics 235:3432,3437, 2006. © 2006 Wiley-Liss, Inc. [source]


    Spatiotemporal distribution of heparan sulfate epitopes during myogenesis and synaptogenesis: A study in developing mouse intercostal muscle

    DEVELOPMENTAL DYNAMICS, Issue 1 2002
    Guido J. Jenniskens
    Abstract Formation of a basal lamina (BL) ensheathing developing skeletal muscle cells is one of the earliest events in mammalian skeletal muscle myogenesis. BL-resident heparan sulfate proteoglycans have been implicated in various processes during myogenesis, including synaptic differentiation. However, attention has focused on the proteoglycan protein core, ignoring the glycosaminoglycan moiety mainly because of a lack of appropriate tools. Recently, we selected a panel of anti,heparan sulfate antibodies applied here to study the spatiotemporal distribution of specific heparan sulfate (HS) epitopes during myogenesis. In mouse intercostal muscle at embryonic day (E14), formation of acetylcholine receptor clusters at synaptic sites coincides with HS deposition. Although some HS epitopes show a general appearance throughout the BL, one epitope preferably clusters at synaptic sites but does so only from E16 onward. During elongation and maturation of primary myotubes, a process preceding secondary myotube development, significant changes in the HS epitope constitution of both synaptic and extrasynaptic BL were observed. As a whole, the data presented here strengthen previous observations on developmental regulation by BL components, and add to the putative roles of specific HS epitopes in myogenesis and synaptogenesis. © 2002 Wiley-Liss, Inc. [source]


    Retina development in zebrafish requires the heparan sulfate proteoglycan agrin

    DEVELOPMENTAL NEUROBIOLOGY, Issue 7 2008
    I-Hsuan Liu
    Abstract Recent studies from our laboratory have begun to elucidate the role of agrin in zebrafish development. One agrin morphant phenotype that results from agrin knockdown is microphthalmia (reduced eye size). To begin to understand the mechanisms underlying the role of agrin in eye development, we have analyzed retina development in agrin morphants. Retinal differentiation is impaired in agrin morphants, with retinal lamination being disrupted following agrin morpholino treatment. Pax 6.1 and Mbx1 gene expression, markers of eye development, are markedly reduced in agrin morphants. Formation of the optic fiber layer of the zebrafish retina is also impaired, exhibited as both reduced size of the optic fiber layer, and disruption of retinal ganglion cell axon growth to the optic tectum. The retinotectal topographic projection to the optic tectum is perturbed in agrin morphants in association with a marked loss of heparan sulfate expression in the retinotectal pathway, with this phenotype resembling retinotectal phenotypes observed in mutant zebrafish lacking enzymes for heparan sulfate synthesis. Treatment of agrin morphants with a fibroblast growth factor (Fgf) receptor inhibitor, rescue of the retinal lamination phenotype by transplantation of Fgf8-coated beads, and disruption of both the expression of Fgf-dependent genes and activation of ERK in agrin morphants provides evidence that agrin modulation of Fgf function contributes to retina development. Collectively, these agrin morphant phenotypes provide support for a crucial role of agrin in retina development and formation of an ordered retinotectal topographic map in the optic tectum of zebrafish. © 2008 Wiley Periodicals, Inc. Develop Neurobiol, 2008. [source]


    HGF induction of postsynaptic specializations at the neuromuscular junction

    DEVELOPMENTAL NEUROBIOLOGY, Issue 2 2006
    Raghavan Madhavan
    Abstract A critical event in the formation of vertebrate neuromuscular junctions (NMJs) is the postsynaptic clustering of acetylcholine receptors (AChRs) in muscle. AChR clustering is triggered by the activation of MuSK, a muscle-specific tyrosine kinase that is part of the functional receptor for agrin, a nerve-derived heparan sulfate proteoglycan (HSPG). At the NMJ, heparan sulfate (HS)-binding growth factors and their receptors are also localized but their involvement in postsynaptic signaling is poorly understood. In this study we found that hepatocyte growth factor (HGF), an HS-binding growth factor, surrounded muscle fibers and was localized at NMJs in rat muscle sections. In cultured Xenopus muscle cells, HGF was enriched at spontaneously occurring AChR clusters (hot spots), where HSPGs were also concentrated, and, following stimulation of muscle cells by agrin or cocultured neurons, HGF associated with newly formed AChR clusters. HGF presented locally to cultured muscle cells by latex beads induced new AChR clusters and dispersed AChR hot spots, and HGF beads also clustered phosphotyrosine, activated c-Met, and proteins of dystrophin complex; clustering of AChRs and associated proteins by HGF beads required actin polymerization. Lastly, although bath-applied HGF alone did not induce new AChR clusters, addition of HGF potentiated agrin-dependent AChR clustering in muscle. Our findings suggest that HGF promotes AChR clustering and synaptogenic signaling in muscle during NMJ development. © 2005 Wiley Periodicals, Inc. J Neurobiol, 2005 [source]


    Heparan sulfate proteoglycans in experimental models of diabetes: a role for perlecan in diabetes complications

    DIABETES/METABOLISM: RESEARCH AND REVIEWS, Issue 6 2001
    Karin Conde-Knape
    Abstract Proteoglycans are ubiquitous extracellular proteins that serve a variety of functions throughout the organism. Unlike other glycoproteins, proteoglycans are classified based on the structure of the glycosaminoglycan carbohydrate chains, not the core proteins. Perlecan, a member of the heparan sulfate proteoglycan (HSPG) family, has been implicated in many complications of diabetes. Decreased levels of perlecan have been observed in the kidney and in other organs, both in patients with diabetes and in animal models. Perlecan has an important role in the maintenance of the glomerular filtration barrier. Decreased perlecan in the glomerular basement membrane has a central role in the development of diabetic albuminuria. The involvement of this proteoglycan in diabetic complications and the possible mechanisms underlying such a role have been addressed using a variety of models. Due to the importance of nephropathy among diabetic patients most of the studies conducted so far relate to diabetes effects on perlecan in different types of kidney cells. The various diabetic models used have provided information on some of the mechanisms underlying perlecan's role in diabetes as well as on possible factors affecting its regulation. However, many other aspects of perlecan metabolism still await full elucidation. The present review provides a description of the models that have been used to study HSPG and in particular perlecan metabolism in diabetes and some of the factors that have been found to be important in the regulation of perlecan. Copyright © 2001 John Wiley & Sons, Ltd. [source]


    Effects of agrin on the expression and distribution of the water channel protein aquaporin-4 and volume regulation in cultured astrocytes

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 8 2007
    Susan Noell
    Abstract Agrin is a heparan sulfate proteoglycan of the extracellular matrix and is known for organizing the postsynaptic differentiation of the neuromuscular junction. Increasing evidence also suggests roles for agrin in the developing CNS, including the formation and maintenance of the blood,brain barrier. Here we describe effects of agrin on the expression and distribution of the water channel protein aquaporin-4 (AQP4) and on the swelling capacity of cultured astrocytes of newborn mice. If astrocytes were cultured on a substrate containing poly dl -ornithine, anti-AQP4 immunoreactivity was evenly and diffusely distributed. If, however, astrocytes were cultured in the presence of agrin-conditioned medium, we observed an increase in the intensity of AQP4-specific membrane-associated staining. Freeze-fracture studies revealed a clustering of orthogonal arrays of particles, representing a structural equivalent of AQP4, when exogenous agrin was present in the astrocyte cultures. Neuronal and non-neuronal agrin isoforms (agrin A0B0 and agrin A4B8, respectively) were able to induce membrane-associated AQP4 staining. Water transport capacity as well as the density of orthogonal arrays of intramembranous particles was increased in astrocytes cultured with the neuronal agrin isoform A4B8, but not with the endothelial and meningeal isoform A0B0. RT-PCR demonstrated that agrin A4B8 increased the level of the M23 splice variant of AQP4 and decreased the level of the M1 splice variant of AQP4. Implications for the regulation and maintenance of the blood,brain barrier including oedema formation under pathological conditions are discussed. [source]


    Cell surface nucleolin on developing muscle is a potential ligand for the axonal receptor protein tyrosine phosphatase-,

    FEBS JOURNAL, Issue 20 2006
    Daniel E. Alete
    Reversible tyrosine phosphorylation, catalyzed by receptor tyrosine kinases and receptor tyrosine phosphatases, plays an essential part in cell signaling during axonal development. Receptor protein tyrosine phosphatase-, has been implicated in the growth, guidance and repair of retinal axons. This phosphatase has also been implicated in motor axon growth and innervation. Insect orthologs of receptor protein tyrosine phosphatase-, are also implicated in the recognition of muscle target cells. A potential extracellular ligand for vertebrate receptor protein tyrosine phosphatase-, has been previously localized in developing skeletal muscle. The identity of this muscle ligand is currently unknown, but it appears to be unrelated to the heparan sulfate ligands of receptor protein tyrosine phosphatase-,. In this study, we have used affinity chromatography and tandem MS to identify nucleolin as a binding partner for receptor protein tyrosine phosphatase-, in skeletal muscle tissue. Nucleolin, both from tissue lysates and in purified form, binds to receptor protein tyrosine phosphatase-, ectodomains. Its expression pattern also overlaps with that of the receptor protein tyrosine phosphatase-,-binding partner previously localized in muscle, and nucleolin can also be found in retinal basement membranes. We demonstrate that a significant amount of muscle-associated nucleolin is present on the cell surface of developing myotubes, and that two nucleolin-binding components, lactoferrin and the HB-19 peptide, can block the interaction of receptor protein tyrosine phosphatase-, ectodomains with muscle and retinal basement membranes in tissue sections. These data suggest that muscle cell surface-associated nucleolin represents at least part of the muscle binding site for axonal receptor protein tyrosine phosphatase-, and that nucleolin may also be a necessary component of basement membrane binding sites of receptor protein tyrosine phosphatase-,. [source]


    Pleiotrophin inhibits HIV infection by binding the cell surface-expressed nucleolin

    FEBS JOURNAL, Issue 18 2005
    Elias A. Said
    The growth factor pleiotrophin (PTN) has been reported to bind heparan sulfate and nucleolin, two components of the cell surface implicated in the attachment of HIV-1 particles to cells. Here we show that PTN inhibits HIV-1 infection by its capacity to inhibit HIV-1 particle attachment to the surface of permissive cells. The ,-sheet domains of PTN appear to be implicated in this inhibitory effect on the HIV infection, in particular the domain containing amino acids 60,110. PTN binding to the cell surface is mediated by high and low affinity binding sites. Other inhibitors of HIV attachment known to bind specifically surface expressed nucleolin, such as the pseudopeptide HB-19 and the cytokine midkine prevent the binding of PTN to its low affinity-binding site. Confocal immunofluorescence laser microscopy revealed that the cross-linking of surface-bound PTN with a specific antibody results in the clustering of cell surface-expressed nucleolin and the colocalization of both PTN and nucleolin signals. Following its binding to surface-nucleolin, PTN is internalized by a temperature sensitive mechanism, a process which is inhibited by HB-19 and is independent of heparan and chondroitin sulfate proteoglycans. Nevertheless, proteoglycans might play a role in the concentration of PTN on the cell surface for a more efficient interaction with nucleolin. Our results demonstrate for the first time that PTN inhibits HIV infection and suggest that the cell surface-expressed nucleolin is a low affinity receptor for PTN binding to cells and it is also implicated in PTN entry into cells by an active process. [source]


    Group IID heparin-binding secretory phospholipase A2 is expressed in human colon carcinoma cells and human mast cells and up-regulated in mouse inflammatory tissues

    FEBS JOURNAL, Issue 11 2002
    Makoto Murakami
    Group IID secretory phospholipase A2 (sPLA2 -IID), a heparin-binding sPLA2 that is closely related to sPLA2 -IIA, augments stimulus-induced cellular arachidonate release in a manner similar to sPLA2 -IIA. Here we identified the residues of sPLA2 -IID that are responsible for heparanoid binding, are and therefore essential for cellular function. Mutating four cationic residues in the C-terminal portion of sPLA2 -IID resulted in abolition of its ability to associate with cell surface heparan sulfate and to enhance stimulus-induced delayed arachidonate release, cyclooxygenase-2 induction, and prostaglandin generation in 293 cell transfectants. As compared with several other group II subfamily sPLA2s, which were equally active on A23187- and IL-1-primed cellular membranes, sPLA2 -IID showed apparent preference for A23187-primed membranes. Several human colon carcinoma cell lines expressed sPLA2 -IID and sPLA2 -X constitutively, the former of which was negatively regulated by IL-1. sPLA2 -IID, but not other sPLA2 isozymes, was expressed in human cord blood-derived mast cells. The expression of sPLA2 -IID was significantly altered in several tissues of mice with experimental inflammation. These results indicate that sPLA2 -IID may be involved in inflammation in cell- and tissue-specific manners under particular conditions. [source]


    Suppression of liver regeneration and hepatocyte proliferation in hepatocyte-targeted glypican 3 transgenic mice,

    HEPATOLOGY, Issue 3 2010
    Bowen Liu
    Glypican 3 (GPC3) belongs to a family of glycosylphosphatidylinositol-anchored, cell-surface heparan sulfate proteoglycans. GPC3 is overexpressed in hepatocellular carcinoma. Loss-of-function mutations of GPC3 result in Simpson-Golabi-Behmel syndrome, an X-linked disorder characterized by overgrowth of multiple organs, including the liver. Our previous study showed that GPC3 plays a negative regulatory role in hepatocyte proliferation, and this effect may involve CD81, a cell membrane tetraspanin. To further investigate GPC3 in vivo, we engineered transgenic (TG) mice overexpressing GPC3 in the liver under the control of the albumin promoter. GPC3 TG mice with hepatocyte-targeted, overexpressed GPC3 developed normally in comparison with their nontransgenic littermates but had a suppressed rate of hepatocyte proliferation and liver regeneration after partial hepatectomy. Moreover, gene array analysis revealed a series of changes in the gene expression profiles in TG mice (both in normal mice and during liver regeneration). In unoperated GPC3 TG mice, there was overexpression of runt related transcription factor 3 (7.6-fold), CCAAT/enhancer binding protein alpha (2.5-fold), GABA A receptor (2.9-fold), and wingless-related MMTV integration site 7B (2.8-fold). There was down-regulation of insulin-like growth factor binding protein 1 (8.4-fold), Rab2 (5.6-fold), beta-catenin (1.7-fold), transforming growth factor beta type I (3.1-fold), nodal (1.8-fold), and yes-associated protein (1.4-fold). Changes after hepatectomy included decreased expression in several cell cycle,related genes. Conclusion: Our results indicate that in GPC3 TG mice, hepatocyte overexpression of GPC3 suppresses hepatocyte proliferation and liver regeneration and alters gene expression profiles, and potential cell cycle,related proteins and multiple other pathways are involved and affected. (HEPATOLOGY 2010;52:1060,1067) [source]


    Liver heparan sulfate proteoglycans: Old molecules provide new insights on lipoprotein metabolism,

    HEPATOLOGY, Issue 4 2007
    Ph.D., Víctor Cortés M.D.
    No abstract is available for this article. [source]


    An interaction between opticin and heparan sulfate may provide the molecular basis for vitreoretinal adhesion

    INTERNATIONAL JOURNAL OF EXPERIMENTAL PATHOLOGY, Issue 4 2004
    V. John Hindson
    Introduction Opticin is a member of the extracellular matrix small leucine-rich repeat (SLRP) proteoglycan/protein family, which was originally identified in the eye associated with the collagen fibrils of the vitreous humour. A putative heparin/heparan sulfate (HS) binding motif (RKERKRR) was identified at the N-terminus of human opticin, but this is absent in the bovine form. Furthermore, the strength of attachment between the vitreous and the retina was observed to be species-dependent and related to the presence or absence of this motif. We hypothesized that opticin cross-links the collagen fibrils of the vitreous to HS proteoglycans in the inner limiting lamina (a basement membrane on the inner surface of the retina), contributing towards vitreoretinal adhesion. Materials and methods Recombinant human and bovine opticin were expressed in 293-EBNA cells and purified to apparent homogeneity. Solid phase assays and surface plasmon resonance studies were used to characterize interactions between immobilized heparin/HS and opticin. Results Solid phase and BIAcore data revealed that human opticin binds heparin/HS and binds to heparin with a dissociation constant of approximately 20 nm. By contrast bovine opticin, which lacks the basic cluster, bound severalfold less tightly. Competition studies with heparin oligosaccharides indicated that the heparin/HS binding site is greater than 6 monosaccharides in length. Heparin, HS, chondroitin sulfate A (CS-A), dermatan sulfate and hyaluronan all competed with heparin for binding to human opticin but CS-C did not. Discussion Work to date suggests that the N-terminal sequence RKERKRR contributes significantly to the binding of opticin to heparin/HS. Vitreoretinal adhesion plays a key role in a number of eye diseases and inhibitors of the opticin,HS interaction could be of therapeutic value. [source]


    The differentiation of ES cells into neuroectodermal precursors is associated with an increase in the levels and sulfation of heparan sulfate proteoglycans

    INTERNATIONAL JOURNAL OF EXPERIMENTAL PATHOLOGY, Issue 4 2004
    Claire E. Johnson
    No abstract is available for this article. [source]


    Heparin and Heparan Sulfate Biosynthesis

    IUBMB LIFE, Issue 4 2002
    Kazuyuki Sugahara
    Abstract Heparan sulfate is one of the most informationally rich biopolymers in Nature. Its simple sugar backbone is variously modified to different degrees depending on the cellular conditions. Thus, it matures to have an enormously complicated structure, which most likely exhibits a considerable number of unique overlapping sequences with peculiar sulfation profiles. Such sequences are recognized by specific complementary proteins, which form a huge group of "heparin-binding proteins," and the sugar sequences in turn support unique functions of the respective proteins through specific interactions. The heparan sulfate sequences are not directly encoded by genes, but are created by elaborate biosynthetic mechanisms, which ensure the generation of these indispensable sequences. In heparan sulfate biosynthesis, the tetrasaccharide sequence (GlcA-Gal-Gal-Xyl-), designated the protein linkage region, is first assembled on a specific Ser residue at the glycosaminoglycan attachment site of a core protein. A heparan sulfate chain is then polymerized on this fragment by alternate additions of GlcNAc and GlcA through the actions of glycosyltransferases with overlapping specificities encoded by the tumor suppressor EXT family genes. Then follow various modifications by N -deacetylation and N -sulfation of glucosamine, C5-epimerization of GlcA and multiple O -sulfations of the component sugars. Recent studies have achieved purification of several, and molecular cloning of most, of the enzymes responsible for these reactions. Some of these enzymes are bifunctional. The availability of cDNA probes has facilitated elucidation of the crystal structures for two of the biosynthetic enzymes, demonstration of their intracellular location, and their occurrence in complexes to achieve rapid and efficient synthesis of complex sugar sequences. Genomic structure and transcript analysis have shown the existence of multiple isoforms for most of the sulfotransferases. Many aspects of the heparan sulfate biosynthetic scheme are shared by the structural analog heparin, which is synthesized in mast cells and some other mammalian cells and is several-fold higher degree of polymerization and more extensive modification than heparan sulfate. [source]


    Purification and characterization of heparan sulfate from human primary osteoblasts

    JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 5 2009
    Sadasivam Murali
    Abstract Heparan sulfate (HS) is a linear, highly variable, highly sulfated glycosaminoglycan sugar whose biological activity largely depends on internal sulfated domains that mediate specific binding to an extensive range of proteins. In this study we employed anion exchange chromatography, molecular sieving and enzymatic cleavage on HS fractions purified from three compartments of cultured osteoblasts,soluble conditioned media, cell surface, and extracellular matrix (ECM). We demonstrate that the composition of HS chains purified from the different compartments is structurally non-identical by a number of parameters, and that these differences have significant ramifications for their ligand-binding properties. The HS chains purified of conditioned medium had twice the binding affinity for FGF2 when compared with either cell surface or ECM HS. In contrast, similar binding of BMP2 to the three types of HS was observed. These results suggest that different biological compartments of cultured cells have structurally and functionally distinct HS species that help to modulate the flow of HS-dependent factors between the ECM and the cell surface. J. Cell. Biochem. 108: 1132,1142, 2009. © 2009 Wiley-Liss, Inc. [source]


    Regulated expression of syndecan-4 in rat calvaria osteoblasts induced by fibroblast growth factor-2

    JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 2 2007
    Shu Jun Song
    Abstract Fibroblast growth factor-2 (FGF2) is a member of a prominent growth factor family that drives proliferation in a wide variety of cell types, including osteoblasts. The binding and signal transduction triggered by these mitogens is dependent on glycosaminoglycan (GAG) sugars, particularly of the heparan sulfate (HS) class. These are secreted in proteoglycan (PG) complexes, some of which become FGF co-receptors. The syndecans, the transmembrane forms of HSPG of which there are four members, act as multifunctional receptors for a variety of ligands involved in cell-extracellular matrix (ECM) adhesion as well as growth factor binding. To understand the role of syndecans in developing osteoblasts, the effects of exogenous FGF2 on syndecan expression were examined using primary rat calvarial osteoblasts. All four syndecan mRNAs were expressed in the osteoblasts, although only syndecan-4 was upregulated by FGF2 treatment in a dose-dependent manner. This upregulation could be abrogated by pretreatment with the protein synthesis inhibitor cycloheximide, suggesting that the upregulation of syndecan-4 by FGF2 is not a primary response. Osteoblast proliferation and mineralization were enhanced by exogenous FGF2 treatment, but could be specifically diminished by anti-syndecan-4 antibody pretreatment. This treatment also blocked FGF2-induced extracellular signal-regulated kinase activation, but not the expression of the bone-specific transcription factor Runx2. These results demonstrate that mitogen-triggered syndecan-4 expression is an intrinsic part of the pathways subtending osteoblast proliferation and mineralization. J. Cell. Biochem. 100: 402,411, 2007. © 2006 Wiley-Liss, Inc. [source]