Hengduan Mountains (hengduan + mountain)

Distribution by Scientific Domains


Selected Abstracts


Elevational patterns of frog species richness and endemic richness in the Hengduan Mountains, China: geometric constraints, area and climate effects

ECOGRAPHY, Issue 6 2006
Cuizhang Fu
We studied frog biodiversity along an elevational gradient in the Hengduan Mountains, China. Endemic and non-endemic elevational diversity patterns were examined individually. Competing hypotheses were also tested for these patterns. Species richness of total frogs, endemics and non-endemics peaked at mid-elevations. The peak in endemic species richness was at higher elevations than the maxima of total species richness. Endemic species richness followed the mid-domain model predictions, and showed a nonlinear relationship with temperature. Water and energy were the most important variables in explaining elevational patterns of non-endemic species richness. A suite of interacting climatic and geometric factors best explained total species richness patterns along the elevational gradient. We suggest that the mid-domain effect was an important factor to explain elevational richness patterns, especially in regions with high endemism. [source]


Timing and style of Late Pleistocene glaciation in the Queer Shan, northern Hengduan Mountains in the eastern Tibetan Plateau,

JOURNAL OF QUATERNARY SCIENCE, Issue 6 2010
Liubing Xu
Abstract Glacial landforms and sediments provide evidence for the existence of two Late Pleistocene major glacial advances in the Queer Shan, northern Hengduan Mountains in the eastern Tibetan Plateau. In the current study, optically stimulated luminescence and electron spin resonance dating results reveal that the two glacial advances occurred during Marine Isotope Stage (MIS) 3 and the Last Glacial Maximum (LGM) in MIS 2, respectively. Geomorphic evidence shows that the glacial advance during MIS 3 was more extensive than that in MIS 2. This glacial advance is synchronous with other glaciated areas in the Himalaya and Tibet, but contrasts with global ice volumes that reached their maximum extent during the LGM. Glaciers in the Queer Shan are of the summer accumulation type and are mainly fed by precipitation from the south Asian monsoon. Palaeoclimate proxies show that during MIS 3 the south Asian monsoon strengthened and extended further north into the Tibetan Plateau to supply more precipitation as snow at high altitudes. This in turn led to positive glacier mass balances and caused glaciers to advance. However, during the LGM, despite cooler temperature than in MIS 3, the weakened south Asian monsoon and the associated reduced precipitation were not as favourable for glacier expansion as in MIS 3. Copyright © 2010 John Wiley & Sons, Ltd. [source]


Karyotype and cytogeography of the genus Heracleum (Apiaceae) in the Hengduan Mountains

JOURNAL OF SYSTEMATICS EVOLUTION, Issue 4 2009
Xian-Lan DENG
Abstract In the present study, the karyotypes of 34 populations belonging to 11 species and one variety of Heracleum from the Hengduan Mountains in China were examined. Chromosome numbers and the karyotypes of three species (H. souliei, H. kingdoni, and H. wenchuanense) are reported for the first time, as are the karyotypes of H. moellendorffii and H. henryi (tetraploid). Populations of H. candicans, H. franchetii, and H. kingdoni in the Hengduan Mountains were found to consist of a mixture of diploid and tetraploid plants. Except for four species of Heracleum, namely H. candicans, H. franchetii, H. henryi, and H. kingdoni, which have both diploid and tetraploid karyotypes, all other species of Heracleum are were found to be diploid. All karyotypes were found to belong to the 2A type of Stebbins, with the exception of H. candicans var. obtusifolium, which belongs to 2B, and H. hemsleyanum and H. franchetii (Mt. Dujuan, Daocheng, Sichuan, China), which belong to 1A. There was only a slight difference in the karyotype asymmetry index, which suggests a close kinship for species of Heracleum and that the entire phylogenetic development of Heracleum is relatively primitive. Species that exhibited advanced morphological features were also more advanced in karyotype structure, with the order of karyotype evolution being 1A,2A,2B. This phenomenon indicates that the species distributed in the Hengduan Mountains have not diverged completely and that the Hengduan Mountains are a relatively young and active area for the evolution of Heracleum. Polyploidization in Heracleum may be an important evolutionary mechanisms for some species, generating diversity. The biological attributes, distribution range, and the geological history of the genus have all played a part in accelerating the evolution through polyploidization or aneuploidization. It is known that as the distribution latitude of Heracleum decreases from north to south, the chromosome number, ploidy level, and asymmetry structure appear to increase. In the Hengduan Mountains, these tendencies are also evident. Finally, based on all the available cytogeographic data, we speculate that the more advanced tetraplont or aneuploid species of Heracleum in India may be derived from early diplont species that were distributed in the Caucasus region and Hengduan Mountains. The dispersal of Heracleum was from Eurasia to India, because this correlates with the emergence of the Himalayan Mountains through tectonic movement. Thus, the Hengduan Mountains are not only a center of diversity for Heracleum, but also a center of active speciation in modern times. [source]


The 29°N latitudinal line: an important division in the Hengduan Mountains, a biodiversity hotspot in southwest China

NORDIC JOURNAL OF BOTANY, Issue 5 2009
Da-Cai Zhang
This paper aimed to explore the division of the southern and northern Hengduan Mountains based on gradients in species similarity and richness, and to analyze species richness in each sub-region. The Hengduan Mountain region was divided into nine latitudinal belts using one degree of latitude to define the belt after which distribution of seed plants within each latitudinal belt was recorded. Latitudinal patterns of species similarity were measured using the Jaccard similarity index for each pair of adjacent latitudinal belts. Non-metric multidimentional scaling (NMDS) was also used to analyze the similarity in species composition among the nine latitudinal belts. The latitudinal pattern of species similarity and the NMDS ordination both showed a great change in species composition across the 29°N latitudinal line, essentially dividing the Hengduan Mountain region into southern and northern sub-regions. Species richness, shown by the c-value of the species,area power function, and species,area ratio along a latitudinal gradient both showed a sharp decrease across the latitudinal belt from 29°0, to 29°59,N. The southern sub-region occupied 40% of the total area of the Hengduan Mountain region, but contained more than 80% of all the seed plants in the region. The higher species richness and endemism in the southern sub-region showed it to be the core of the Hengduan biodiversity hotspot, a result not unexpected because of the greater extremes of topography and wider diversity of habitats in the southern portion. [source]


Distribution pattern of endangered bird species in China

INTEGRATIVE ZOOLOGY (ELECTRONIC), Issue 4 2006
Fumin LEI
Abstract In this study, we determined six "hotspots" for avian biodiversity conservation in China. We analyzed the distribution patterns of 183 threatened bird species in China in conjunction with geographical data to produce a distribution map that shows the concentrations of threatened species. The six biodiversity hotspots are: the western Tianshan Mountains; the Qilian and Hengduan mountains; southern Anhui, southern Jiangsu, and the Zhejiang Hills; the Songliao Plain and the northern region of the North China Plain; the island of Taiwan; and the island of Hainan. Based on our analysis of a species,habitat matrix, species were determined to be distributed mainly in broadleaved forest, grassland and meadows, urban and agricultural areas, wetlands, and bush. Most species were commonly found to have a range of three to five different habitat types. Apart from the six biodiversity hotspots, six ecological clusters were determined. Protection strategies indicating different levels of habitat priority among the biodiversity hotspots were also recommended. [source]