Home About us Contact | |||
Hemoglobin Variants (hemoglobin + variants)
Selected AbstractsHigh-resolution computer simulation of the dynamics of isoelectric focusing of proteinsELECTROPHORESIS, Issue 2 2004Wolfgang Thormann Abstract A dynamic electrophoresis simulator that accepts 150 components and voltage gradients employed in the laboratory was used to provide a detailed description of the focusing process of proteins under conditions that were hitherto inaccessible. High-resolution focusing data of four hemoglobin variants in a convection-free medium are presented for pH 3,10 and pH 5,8 gradients formed with 20 and 40 carrier ampholytes/pH unit, respectively. With 300 V/cm, focusing is shown to occur within 5,10 min, whereas at 600 V/cm separation is predicted to be complete between 2.5 and 5 min. The time interval required for focusing of proteins is demonstrated to be dependent on the input protein charge data and, however less, on the properties of the carrier ampholytes. The simulation data reveal that the number of transient protein boundaries migrating from the two ends of the column towards the focusing positions is equal to the number of sample components. Each protein is being focused via the well-known double-peak approach to equilibrium, a process that is also characteristic for focusing of the carrier ampholytes. The predicted focusing dynamics for the hemoglobin variants in pH 3,10 and pH 5,8 gradients are shown to qualitatively agree well with experimental data obtained by whole-column optical imaging. [source] New approach for rapid detection of known hemoglobin variants using LC-MS/MS combined with a peptide database,JOURNAL OF MASS SPECTROMETRY (INCORP BIOLOGICAL MASS SPECTROMETRY), Issue 3 2007F. Basilico Abstract The identification of hemoglobin (Hb) variants is usually performed by means of different analytical steps and methodologies. Phenotypic methods, such as gel electrophoresis and high performance liquid chromatography, are used to detect the different electrophoretic or chromatographic behaviors of hemoglobin variants in comparison to HbA0 used as a control. These data often need to be combined with mass spectrometry analyses of intact globins and their tryptic peptide mixtures. As an alternative to a ,step-by-step' procedure, we have developed a ,single step' approach for the identification of Hb variants present in biological samples. This is based on the µHPLC-ESI-MS/MS analysis of the peptide mixture generated by a tryptic digestion of diluted Hb samples and an in-house new database containing solely the variant tryptic peptide of known human Hb variants. The experimental results (full MS and MS/MS spectra) are correlated with theoretical mass spectra generated from our in-house-built variant peptide database (Hbp) using the SEQUEST algorithm. Simple preparation of samples and an automated identification of the variant peptide are the main characteristics of this approach, making it an attractive method for the detection of Hb variants at the routine clinical level. We have analyzed 16 different samples, each containing a different known variant of hemoglobin. Copyright © 2006 John Wiley & Sons, Ltd. [source] Detection and characterization of variant and modified structures of proteins in blood and tissues by mass spectrometryMASS SPECTROMETRY REVIEWS, Issue 5 2006Akira Shimizu Abstract Some variant proteins cause diseases, and some diseases result in increases of proteins with abnormally modified structures. The detection, characterization, and estimation of the relative amounts of protein variants and abnormally modified proteins are important for clinical diagnosis and for elucidation of the mechanisms of the pathogenesis of diseases. Analysis of the covalent structures of proteins using matrix-assisted laser desorption time-of-flight mass spectrometry (MALDI-TOF-MS) and liquid chromatography-electrospray ionization MS (LC-ESI-MS), which had been developed by the early 1990s, have largely replaced analyses by conventional protein chemistry. Here, we review the detection and characterization of hemoglobin variants, HbA1c measurement, detection of carbohydrate-deficient transferrin, and identification of variants of transthyretin (TTR) and Cu/Zn-superoxide dismutase (SOD-1) using soft ionization MS. We also propose the diagnostic application of the signals of modified forms of TTR, that is, S-sulfonated TTR and S-homocysteinyl TTR. The relative peak height ratio of the abnormal/normal components gives valuable information about the instability of variants and enables the detection of unstable Hb subunits or thalassemia heterozygotes. We found unique modified structures of TTR that suggested changes in amyloid fibrils. © 2006 Wiley Periodicals, Inc. [source] |