Home About us Contact | |||
Hemispheric Asymmetry (hemispheric + asymmetry)
Selected AbstractsHemispheric asymmetries in children's perception of nonlinguistic human affective soundsDEVELOPMENTAL SCIENCE, Issue 1 2004Seth D. Pollak In the present work, we developed a database of nonlinguistic sounds that mirror prosodic characteristics typical of language and thus carry affective information, but do not convey linguistic information. In a dichotic-listening task, we used these novel stimuli as a means of disambiguating the relative contributions of linguistic and affective processing across the hemispheres. This method was applied to both children and adults with the goal of investigating the role of developing cognitive resource capacity on affective processing. Results suggest that children's limited computational resources influence how they process affective information and rule out attentional biases as a factor in children's perceptual asymmetries for nonlinguistic affective sounds. These data further suggest that investigation of perception of nonlinguistic affective sounds is a valuable tool in assessing interhemispheric asymmetries in affective processing, especially in parceling out linguistic contributions to hemispheric differences. [source] Arterial spin-labeled perfusion combined with segmentation techniques to evaluate cerebral blood flow in white and gray matter of children with sickle cell anemia,PEDIATRIC BLOOD & CANCER, Issue 1 2009Kathleen J. Helton MD Abstract Background Changes in cerebral perfusion are an important feature of the pathophysiology of sickle cell anemia (SCA); cerebrovascular ischemia occurs frequently and leads to neurocognitive deficits, silent infarcts, and overt stroke. Non-invasive MRI methods to measure cerebral blood flow (CBF) by arterial spin labeling (ASL) afford new opportunities to characterize disease- and therapy-induced changes in cerebral hemodynamics in patients with SCA. Recent studies have documented elevated gray matter (GM) CBF in untreated children with SCA, but no measurements of white matter (WM) CBF have been reported. Procedures Pulsed ASL with automated brain image segmentation-classification techniques were used to determine the CBF in GM, WM, and abnormal white matter (ABWM) of 21 children with SCA, 18 of whom were receiving hydroxyurea therapy. Results GM and WM CBF were highly associated (R2,=,0.76, P,<,0.0001) and the GM to WM CBF ratio was 1.6 (95% confidence interval: 1.43,1.83). Global GM CBF in our treated cohort was 87,±,24 mL/min/100 g, a value lower than previously reported in untreated patients with SCA. CBF was elevated in normal appearing WM (43,±,14 mL/min/100 g) but decreased in ABWM (6,±,12 mL/min/100 g), compared to published normal pediatric controls. Hemispheric asymmetry in CBF was noted in most patients. Conclusions These perfusion measurements suggest that hydroxyurea may normalize GM CBF in children with SCA, but altered perfusion in WM may persist. This novel combined approach for CBF quantification will facilitate prospective studies of cerebral vasculopathy in SCA, particularly regarding the effects of treatments such as hydroxyurea. Pediatr Blood Cancer 2009;52:85,91. © 2008 Wiley-Liss, Inc. [source] A functional magnetic resonance imaging study of cortical asymmetry in bipolar disorderBIPOLAR DISORDERS, Issue 3 2004Michael P Caligiuri Objectives:, Individuals with bipolar disorder (BPD) exhibit motor, perceptual, and cognitive disturbances involving predominantly right hemisphere dysfunction. This asymmetry has been used to advance the hypothesis that the pathogenesis of bipolar disorder may be related to disturbances of the right cerebral hemisphere. We employed functional magnetic resonance imaging to examine hemispheric asymmetries in manic and depressed BPD. A secondary goal of the study was to examine effects of psychotropic medications on blood volume changes in the motor cortices. Methods:, We studied 18 right-handed BPD and 13 right-handed normal healthy comparison subjects. Blood oxygen level dependent (BOLD) responses in the primary motor area (M1) and supplementary motor area (SMA) of both hemispheres were elicited during reaction time (RT) tasks. Results:, Healthy subjects activated the SMA in a reciprocal fashion with significantly greater activity in the left SMA for right hand trials and the right SMA for left hand trials. Depressed BPD subjects failed to show this normal reciprocity indicating a failure to suppress unwanted activity in the ipsilateral right SMA, whereas manic BPD subjects failed to suppress unwanted ipsilateral SMA activity in both hemispheres. Manic and depressed BPD subjects exhibited greater activity in the left primary motor area suggesting increased cortical excitability. BPD subjects treated with antipsychotics or mood-stabilizing medications exhibited longer RTs, lower BOLD responses in M1 and SMA, and a loss of normal hemispheric asymmetry in the SMA than untreated subjects. Conclusions:, The presence of a right hemisphere disturbance in BPD is consistent with the hypothesis that the right hemisphere may be dominant in mood regulation. The presence of both left and right hemisphere disturbances in mania may explain the coexisting psychotic and affective symptoms observed in this condition. [source] Altered volume and hemispheric asymmetry of the superficial cortical layers in the schizophrenia planum temporaleEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 3 2009John F. Smiley Abstract In vivo structural MRI studies in schizophrenia auditory cerebral cortex have reported smaller volumes and, less consistently, have reported altered hemispheric asymmetry of volumes. We used autopsy brains from 19 schizophrenia and 18 nonpsychiatric male subjects to measure the volume asymmetry of the planum temporal (PT). We then used the most recently autopsied 11 schizophrenia and 10 nonpsychiatric brains to measure the widths and fractional volumes of the upper (I,III) and lower (IV,VI) layers. Measurements of whole PT gray matter volumes did not show significant changes in schizophrenia. Nevertheless, laminar volume measurements revealed that the upper layers of the PT comprise a smaller fraction of the total cortex in schizophrenia than in nonpsychiatric brains. Subdivision of the PT showed that this change was especially prominent caudally, beyond Heschl's gyrus, whereas similar but less pronounced changes were found in the rostral PT and Heschl's gyrus. Complementary measures of laminar widths showed that the altered fractional volume in the caudal left PT was due mainly to ,8% thinner upper layers. However, the caudal right PT had a different profile, with thicker lower layers and comparatively unchanged upper layers. Thus, in the present study, laminar measurements provided a more sensitive method for detecting changes than measurement of whole PT volumes. Besides findings in schizophrenia, our cortical width measurements revealed normal hemispheric asymmetries consistent with previous reports. In schizophrenia, the thinner upper layers of the caudal PT suggest disrupted corticocortical processing, possibly affecting the multisensory integration and phonetic processing of this region. [source] Effect of auditory cortex lesions on the discrimination of frequency-modulated tones in ratsEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 6 2006Natalia Rybalko Abstract The lateralization of functions to individual hemispheres of the mammalian brain remains, with the exception of the human brain, unresolved. The aim of this work was to investigate the ability to discriminate between falling and rising frequency-modulated (FM) stimuli in rats with unilateral or bilateral lesions of the auditory cortex (AC). Using an avoidance conditioning procedure, thirsty rats were trained to drink in the presence of a rising FM tone and to stop drinking when a falling FM tone was presented. Rats with a lesion of the AC were able to learn to discriminate between rising and falling FM tones; however, they performed significantly worse than did control rats. A greater deficit in the ability to discriminate the direction of frequency modulation was observed in rats with a right or bilateral AC lesion. The discrimination performance (DP) in these rats was significantly worse than the DP in rats with a left AC lesion. Animals with a right or bilateral AC lesion improved their DP mainly by recognizing the pitch at the beginning of the stimuli. The lesioning of the AC in trained animals caused a significant decrease in DP, down to chance levels. Retraining resulted in a significant increase in DP in rats with a left AC lesion; animals with a right lesion improved only slightly. The results demonstrate a hemispheric asymmetry of the rat AC in the recognition of FM stimuli and indicate the dominance of the right AC in the discrimination of the direction of frequency modulation. [source] Passive avoidance training decreases synapse density in the hippocampus of the domestic chickEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 4 2006A. M. Nikolakopoulou Abstract The bird hippocampus (Hp), although lacking the cellular lamination of the mammalian Hp, possesses comparable roles in spatial orientation and is implicated in passive avoidance learning. As in rodents it can be divided into dorsal and ventral regions based on immunocytochemical, tracing and electrophysiological studies. To study the effects of passive avoidance learning on synapse morphometry in the Hp, spine and shaft synapse densities of 1-day-old domestic chicks were determined in dorsal and ventral Hp of each hemisphere by electron microscopy, 6 and 24 h following training to avoid pecking at a bead coated with a bitter-tasting substance, methyl anthranilate (MeA). The density of asymmetric spine and shaft synapses in MeA-trained birds at 6 h post-training was significantly lower in the dorsal and ventral Hp of the right hemisphere relative to control (untrained) chicks, but by 24 h this difference was absent. A hemispheric asymmetry was apparent in the ventral Hp where the water-trained group showed enhanced shaft and spine synapse density in the left hemisphere, whilst in the MeA-trained group only asymmetric shaft synapses follow the same pattern in relation to the right hemisphere. There were no differences in asymmetric shaft synapses in the dorsal Hp at 6 h post-training, but at 24 h post-training there was a reduction in the density of shaft synapses in the right hemisphere in MeA compared with control birds. These data are discussed in relation to the pruning effects of stress and learning on synapse density in chick Hp. [source] MR-determined hippocampal asymmetry in full-term and preterm neonatesHIPPOCAMPUS, Issue 2 2009Deanne K. Thompson Abstract Hippocampi are asymmetrical in children and adults, where the right hippocampus is larger. To date, no literature has confirmed that hippocampal asymmetry is evident at birth. Furthermore, gender differences have been observed in normal hippocampal asymmetry, but this has not been examined in neonates. Stress, injury, and lower IQ have been associated with alterations to hippocampal asymmetry. These same factors often accompany preterm birth. Therefore, prematurity is possibly associated with altered hippocampal asymmetry. There were three aims of this study: First, we assessed whether hippocampi were asymmetrical at birth, second whether there was a gender effect on hippocampal asymmetry, and third whether the stress of preterm birth altered hippocampal asymmetry. This study utilized volumetric magnetic resonance imaging to compare left and right hippocampal volumes in 32 full-term and 184 preterm infants at term. Full-term infants demonstrated rightward hippocampal asymmetry, as did preterm infants. In the case of preterm infants, hippocampal asymmetry was proportional to total hemispheric asymmetry. This study is the first to demonstrate that the normal pattern of hippocampal asymmetry is present this early in development. We did not find gender differences in hippocampal asymmetry at term. Preterm infants tended to have less asymmetrical hippocampi than full-term infants, a difference which became significant after correcting for hemispheric brain tissue volumes. This study may suggest that hippocampal asymmetry develops in utero and is maintained into adulthood in infants with a normal neurological course. © 2008 Wiley-Liss, Inc. [source] Gender differences in hemispheric asymmetry of syllable processing: Left-lateralized magnetic N100 varies with syllable categorization in femalesPSYCHOPHYSIOLOGY, Issue 5 2004Jonas Obleser Abstract The present study used magnetic source imaging to examine gender differences in the functional hemispheric asymmetry of auditory processing. The auditory evoked N100m was examined in male and female subjects in response to natural syllables with varying consonant and vowel as well as nonspeech noise. In an additional task subjects had to categorize different syllables from the first 35 ms of syllables, that is, the plosive and the formant transition. Syllable-evoked N100m activity was larger in the left than in the right hemisphere in female but not in male subjects. This gender-specific hemispheric asymmetry was speech specific, that is, absent when processing meaningless noise. Only in females did the degree of left-lateralization predict successful syllable categorization from short syllable bursts: Results suggest gender-specific differences in spectro-temporal analysis of speech. [source] Planum parietale of chimpanzees and orangutans: A comparative resonance of human-like planum temporale asymmetryTHE ANATOMICAL RECORD : ADVANCES IN INTEGRATIVE ANATOMY AND EVOLUTIONARY BIOLOGY, Issue 1 2005Patrick J. Gannon Abstract We have previously demonstrated that leftward asymmetry of the planum temporale (PT), a brain language area, was not unique to humans since a similar condition is present in great apes. Here we report on a related area in great apes, the planum parietale (PP). PP in humans has a rightward asymmetry with no correlation to the L>R PT, which indicates functional independence. The roles of the PT in human language are well known while PP is implicated in dyslexia and communication disorders. Since posterior bifurcation of the sylvian fissure (SF) is unique to humans and great apes, we used it to determine characteristics of its posterior ascending ramus, an indicator of the PP, in chimpanzee and orangutan brains. Results showed a human-like pattern of R>L PP (P = 0.04) in chimpanzees with a nonsignificant negative correlation of L>R PT vs. R>L PP (CC = ,0.3; P = 0.39). In orangutans, SF anatomy is more variable, although PP was nonsignificantly R>L in three of four brains (P = 0.17). We have now demonstrated human-like hemispheric asymmetry of a second language-related brain area in great apes. Our findings persuasively support an argument for addition of a new component to the comparative neuroanatomic complex that defines brain language or polymodal communication areas. PP strengthens the evolutionary links that living great apes may offer to better understand the origins of these progressive parts of the brain. Evidence mounts for the stable expression of a neural foundation for language in species that we recently shared a common ancestor with. © 2005 Wiley-Liss, Inc. [source] Unilateral suppression of pharyngeal motor cortex to repetitive transcranial magnetic stimulation reveals functional asymmetry in the hemispheric projections to human swallowingTHE JOURNAL OF PHYSIOLOGY, Issue 2 2007Satish Mistry Inhibitory patterns of repetitive transcranial magnetic stimulation (rTMS) were applied to pharyngeal motor cortex in order to establish its role in modulating swallowing activity and provide evidence for functionally relevant hemispheric asymmetry. Healthy volunteers underwent single pulse TMS before and for 60 min after differing intensities of 1 Hz rTMS (n= 9, 6 male, 3 female, mean age 34 ± 3 years) or theta burst stimulation (TBS) (n= 9, 6 male, 3 female, mean age 37 ± 4 years). Electromyographic responses recorded from pharynx and hand were used as a measure of cortico-motor pathway excitability. Swallowing behaviour was then examined with a reaction time protocol, before and for up to 60 min after the most effective inhibitory protocol (1 Hz) applied to each hemisphere. Interventions were conducted on separate days and compared to sham using ANOVA. Only high intensity 1 Hz rTMS consistently suppressed pharyngeal motor cortex immediately and for up to 45 min (,34 ± 7%, P, 0.001). Adjacent hand and contralateral pharyngeal motor cortex showed no change in response (,15 ± 12%, P= 0.14 and 15 ± 12%, P= 0.45, respectively). When used to unilaterally disrupt each hemisphere, rTMS to pharyngeal motor cortex with the stronger responses altered normal (,12 ± 3%, P, 0.001) and fast (,9 ± 4%, P, 0.009) swallow times, not seen following rTMS to the contralateral cortex or after sham. Thus, suppression of pharyngeal motor cortex to rTMS is intensity and frequency dependent, which when applied to each hemisphere reveals functionally relevant asymmetry in the motor control of human swallowing. [source] A functional magnetic resonance imaging study of cortical asymmetry in bipolar disorderBIPOLAR DISORDERS, Issue 3 2004Michael P Caligiuri Objectives:, Individuals with bipolar disorder (BPD) exhibit motor, perceptual, and cognitive disturbances involving predominantly right hemisphere dysfunction. This asymmetry has been used to advance the hypothesis that the pathogenesis of bipolar disorder may be related to disturbances of the right cerebral hemisphere. We employed functional magnetic resonance imaging to examine hemispheric asymmetries in manic and depressed BPD. A secondary goal of the study was to examine effects of psychotropic medications on blood volume changes in the motor cortices. Methods:, We studied 18 right-handed BPD and 13 right-handed normal healthy comparison subjects. Blood oxygen level dependent (BOLD) responses in the primary motor area (M1) and supplementary motor area (SMA) of both hemispheres were elicited during reaction time (RT) tasks. Results:, Healthy subjects activated the SMA in a reciprocal fashion with significantly greater activity in the left SMA for right hand trials and the right SMA for left hand trials. Depressed BPD subjects failed to show this normal reciprocity indicating a failure to suppress unwanted activity in the ipsilateral right SMA, whereas manic BPD subjects failed to suppress unwanted ipsilateral SMA activity in both hemispheres. Manic and depressed BPD subjects exhibited greater activity in the left primary motor area suggesting increased cortical excitability. BPD subjects treated with antipsychotics or mood-stabilizing medications exhibited longer RTs, lower BOLD responses in M1 and SMA, and a loss of normal hemispheric asymmetry in the SMA than untreated subjects. Conclusions:, The presence of a right hemisphere disturbance in BPD is consistent with the hypothesis that the right hemisphere may be dominant in mood regulation. The presence of both left and right hemisphere disturbances in mania may explain the coexisting psychotic and affective symptoms observed in this condition. [source] |