Home About us Contact | |||
Hemisphere Contralateral (hemisphere + contralateral)
Selected AbstractsIctal Brain Hyperperfusion Contralateral to Seizure Onset: The SPECT Mirror ImageEPILEPSIA, Issue 1 2006Gilles Huberfeld Summary:,Purpose: Ictal single-photon emission computed tomography (SPECT) may help localize the seizure-onset zone (SOZ) by detecting changes in regional cerebral blood flow induced by epileptic discharges. This imaging method also reveals hyperperfusions in areas of seizure propagation, including the hemisphere contralateral to the SOZ. We have studied the occurrence, the topography, and the clinical value of such contralateral ictal hyperperfusion areas (HPAs). Methods: We examined data from presurgical evaluations of 36 consecutive patients with pharmacoresistant partial epilepsy of various localizations. Ictal and interictal SPECT examinations were made with 99mTc-ECD, and the scans were processed for coregistration, normalization, subtraction, and merging with MRI images. Results: Contralateral HPAs were observed in 72% of the patients: 50% of mesiotemporal epilepsy cases with hippocampal sclerosis, 85.7% of the other mesiotemporal epilepsies, 85.7% of neocortical lateral temporal epilepsies, and 87.5% of extratemporal epilepsies. Contralateral HPAs were usually symmetrical to the SOZ, forming a mirror image, observed in 57.1% of the patients. They could be slightly asymmetrical in mesiotemporal epilepsies, perhaps because of the particular anatomic pathways linking temporal lobes. In neocortical epilepsies, they were located in the cortex homotopic to the SOZ. Conclusions: We show that the symmetrical nature of the mirror image usually does not disturb SPECT interpretation. It can confirm the location of the SOZ (11 patients) and even occasionally improve the precision of its definition (nine patients) by restraining several potential SOZ-related HPAs to a single one or by permitting a restricted localization of the SOZ in a large HPA. [source] Direction-dependent visual cortex activation during horizontal optokinetic stimulation (fMRI study)HUMAN BRAIN MAPPING, Issue 4 2006Sandra Bense Abstract Looking at a moving pattern induces optokinetic nystagmus (OKN) and activates an assembly of cortical areas in the visual cortex, including lateral occipitotemporal (motion-sensitive area MT/V5) and adjacent occipitoparietal areas as well as ocular motor areas such as the prefrontal cortex, frontal, supplementary, and parietal eye fields. The aim of this functional MRI (fMRI) study was to investigate (1) whether stimulus direction-dependent effects can be found, especially in the cortical eye fields, and (2) whether there is a hemispheric dominance of ocular motor areas. In a group of 15 healthy subjects, OKN in rightward and leftward directions was visually elicited and statistically compared with the control condition (stationary target) and with each other. Direction-dependent differences were not found in the cortical eye fields, but an asymmetry of activation occurred in paramedian visual cortex areas, and there were stronger activations in the hemisphere contralateral to the slow OKN phase (pursuit). This can be explained by a shift of the mean eye position of gaze (beating field) in the direction of the fast nystagmus phases of approximately 2.6 degrees, causing asymmetrical visual cortex stimulation. The absence of a significant difference in the activation pattern of the cortical eye fields supports the view that the processing of eye movements in both horizontal directions is mediated in the same cortical ocular motor areas. Furthermore, no hemispheric dominance for OKN processing was found in right-handed volunteers. Hum Brain Mapp, 2005. © 2005 Wiley-Liss, Inc. [source] Quantitative characterization of hemodynamic properties and vasculature dysfunction of high-grade gliomasNMR IN BIOMEDICINE, Issue 6 2007Vijaya Nagesh Abstract Aberrations in tumor and peritumoral vasculature may not be distinguishable by cerebral blood flow (CBF) or cerebral blood volume (CBV) alone. The relationships between CBF and CBV were examined to estimate vasculature-specific hemodynamic characteristics. Twenty glioma patients were studied with dynamic susceptibility T2*-weighted MRI [(dynamic contrast-enhanced magnetic resonance imaging (DSC-MRI)] before and during week 1 and 3 of radiotherapy (RT). CBF and CBV were calculated from DSC-MRI, and relationships between the two were evaluated: the physiological measure of mean transit time (MTT),=,CBV/CBF; empirical fitting using the power law CBV,=,constant,×,(CBF),. Three different tissue types were assessed: the Gd-enhancing tumor volume (GEV); non-enhanced abnormal tissue located beyond GEV but within the abnormal hyperintense region on FLAIR images (NEV); normal tissue in the hemisphere contralateral to the tumor (CNT). The effects of tissue types, CBV magnitudes (low, medium and high), before and during RT, on MTT and , were analyzed by analysis of variance (ANOVA). The MTT and , for the three tissue types were significantly different (p,<,0.009). MTT increased from CNT (1.60,s) to NEV (1.93,s) to GEV (2.28,s) (p,<,0.0005). , was significantly greater in GEV (1.079) and NEV (1.070) than in CNT (1.025). , increased with increasing CBV magnitude while MTT was independent of CBV magnitude. There was a significant decrease in MTT of NEV and GEV during week 3 of RT compared with pre-RT values for all CBV magnitudes. There was a significant increase in , during RT in the tumor and peritumor. Progressive abnormalities in vasculature and hemodynamic characteristics of the vascular bed were delineated, with significant disorder in the tumor but mild abnormality in peritumoral tissue. Copyright © 2007 John Wiley & Sons, Ltd. [source] MR evaluation of crossed and uncrossed cerebral,cerebellar diaschisisACTA NEUROLOGICA SCANDINAVICA, Issue 1 2003A. Chakravarty In three patients with infantile hemiplegia syndrome, MR imaging done later in life showed significant volume loss in the cerebellar hemisphere contralateral to the side of the affected cerebrum in two and ipsilateral in one. By comparison, the cerebellar volume loss seemed to correlate with the degree of volume loss in the contralateral cerebral hemispheres in two patients. These observations provide morphological evidence of the phenomenon of crossed and uncrossed/ipsilateral cerebral,cerebellar diaschisis (CCD and ICD). Functional neuroimaging studies in support of the concept of CCD and ICD have been critically reviewed in the light of the morphological changes demonstrated in the cases cited herein. [source] |