Home About us Contact | |||
Hematopoietic Niche (hematopoietic + niche)
Selected AbstractsRole of the Osteoblast Lineage in the Bone Marrow Hematopoietic Niches,JOURNAL OF BONE AND MINERAL RESEARCH, Issue 5 2009Joy Y Wu First page of article [source] Distinct osteoblastic differentiation potential of murine fetal liver and bone marrow stroma-derived mesenchymal stem cellsJOURNAL OF CELLULAR BIOCHEMISTRY, Issue 2 2008Olivia Fromigué Abstract Bone marrow-derived mesenchymal stem cells (MSC) are able to differentiate into osteoblasts under appropriate induction. Although MSC-derived osteoblasts are part of the hematopoietic niche, the nature of the stromal component in fetal liver remains elusive. Here, we determined the in vitro osteoblastic differentiation potential of murine clonal fetal liver-derived cells (AFT024, BFC012, 2012) in comparison with bone marrow-derived cell lines (BMC9, BMC10). Bone morphogenetic protein-2 (BMP2) increased alkaline phosphatase (ALP) activity, an early osteoblastic marker, in AFT024 and 2012 cells, whereas dexamethasone had little or no effect. BMP2, but not dexamethasone, increased ALP activity in BMC9 cells, and both inducers increased ALP activity in BMC10 cells. BMP2 increased ALP mRNA in AFT024, 2012 and BMC9 cells. By contrast, ALP was not detected in BMC10 and BFC012 cells. BMP2 and dexamethasone increased osteopontin and osteocalcin mRNA expression in 2012 cells. Furthermore, bone marrow-derived cells showed extensive matrix mineralization, whereas fetal liver-derived cell lines showed no or very limited matrix mineralization capacity. These results indicate that the osteoblast differentiation potential differs in bone marrow and fetal liver-derived cell lines, which may be due to a distinct developmental program or different microenvironment in the two hematopoietic sites. J. Cell. Biochem. 104: 620,628, 2008. © 2007 Wiley-Liss, Inc. [source] Regulation of hematopoietic niches by sympathetic innervationBIOESSAYS, Issue 7 2006Hector Leonardo Aguila Once hematopoiesis is established in the bone marrow, a continuous egress of hematopoietic stem cells (HSCs) to the periphery occurs at a low frequency. It has been proposed that this phenomenon is part of a regenerative homeostatic mechanism that ensures the maintenance of hematopoiesis through the life of the individual. The administration of certain cytotoxic drugs or cytokines can enhance the mobilization of hematopoietic progenitors to the periphery. During the past 15 years, granulocyte-colony stimulating factor (G-CSF) has been used as a standard cytokine for mobilization protocols in experimental models and in humans. Despite extensive efforts by multiple groups, a definitive mechanism explaining its role in mobilization has not been provided. In a recent paper, Katayama et al.,1 through a series of clever associations supported by well-defined experimental systems, proposed that signals through the sympathetic nervous system modify the activity of the hematopoietic niche, acting as regulators of the mobilization of hematopoietic progenitors. This surprising finding adds a new level of complexity to the cellular milieu responsible for generation and maintenance of the hematopoietic niche. BioEssays 28: 687,691, 2006. © 2006 Wiley Periodicals, Inc. [source] |