Hematopoietic Cells (hematopoietic + cell)

Distribution by Scientific Domains
Distribution within Medical Sciences

Terms modified by Hematopoietic Cells

  • hematopoietic cell line
  • hematopoietic cell transplantation

  • Selected Abstracts


    A granular variant of CD63 is a regulator of repeated human mast cell degranulation

    ALLERGY, Issue 10 2010
    T. Schäfer
    To cite this article: Schäfer T, Starkl P, Allard C, Wolf RM, Schweighoffer T. A granular variant of CD63 is a regulator of repeated human mast cell degranulation. Allergy 2010; 65: 1242,1255. Abstract Background:, Mast cells are secretory immune cells whose degranulation can provoke acute allergic reactions. It is presently unclear, however, whether an individual mast cell can repeatedly degranulate or turns dysfunctional after a single antigen stimulus. This work thus aims to better define the mast cell life cycle, with particular focus on new target structures for therapeutic or diagnostic approaches in allergy. Methods:, Monoclonal antibodies were raised against degranulated cord blood-derived human mast cells. A subset of these antibodies that exclusively recognized degranulated mast cells, but did not cross-react with quiescent mast cells or other hematopoietic cell types, became key reagents in subsequent experiments. Results:, We identified a granular variant of tetraspanin CD63 as an exclusive molecular marker of degranulated human mast cells. Mutant analyses indicate that a cysteine cluster around residue C170 and protein glycosylation at residue N172 account for the antibody specificity. Here, we show that mast cells, which underwent an initial Fc,RI-mediated degranulation, can be degranulated for at least another cycle in vitro. Repeated degranulation, however, requires an IgE/antigen stimulus that differs from the preceding one. Furthermore, the new variant-specific anti-CD63 antibodies effectively impair repeated cycles of mast cell degranulation. Conclusion:, Our findings indicate that mast cells are stable, multiple-use cells, which are capable of surviving and delivering several consecutive hits. Surface expression of the novel CD63 variant is a distinguishing feature of such primed cells. Reagents directed against this molecular hallmark may thus become valuable diagnostic and therapeutic agents. [source]


    A bicistronic SIN-lentiviral vector containing G156A MGMT allows selection and metabolic correction of hematopoietic protoporphyric cell lines

    THE JOURNAL OF GENE MEDICINE, Issue 9 2003
    Emmanuel Richard
    Abstract Background Erythropoietic protoporphyria (EPP) is an inherited disease characterised by a ferrochelatase (FECH) deficiency, the latest enzyme of the heme biosynthetic pathway, leading to the accumulation of toxic protoporphyrin in the liver, bone marrow and spleen. We have previously shown that a successful gene therapy of a murine model of the disease was possible with lentiviral vectors even in the absence of preselection of corrected cells, but lethal irradiation of the recipient was necessary to obtain an efficient bone marrow engraftment. To overcome a preconditioning regimen, a selective growth advantage has to be conferred to the corrected cells. Methods We have developed a novel bicistronic lentiviral vector that contains the human alkylating drug resistance mutant O6 -methylguanine DNA methyltransferase (MGMT G156A) and FECH cDNAs. We tested their capacity to protect hematopoietic cell lines efficiently from alkylating drug toxicity and correct enzymatic deficiency. Results EPP lymphoblastoid (LB) cell lines, K562 and cord-blood-derived CD34+ cells were transduced at a low multiplicity of infection (MOI) with the bicistronic constructs. Resistance to O6 -benzylguanine (BG)/N,N,-bis(2-chloroethyl)- N -nitrosourea (BCNU) was clearly shown in transduced cells, leading to the survival and expansion of provirus-containing cells. Corrected EPP LB cells were selectively amplified, leading to complete restoration of enzymatic activity and the absence of protoporphyrin accumulation. Conclusions This study demonstrates that a lentiviral vector including therapeutic and G156A MGMT genes followed by BG/BCNU exposure can lead to a full metabolic correction of deficient cells. This vector might form the basis of new EPP mouse gene therapy protocols without a preconditioning regimen followed by in vivo selection of corrected hematopoietic stem cells. Copyright © 2003 John Wiley & Sons, Ltd. [source]


    Bone marrow cells from myelodysplastic syndromes show altered immunophenotypic profiles that may contribute to the diagnosis and prognostic stratification of the disease: A pilot study on a series of 56 patients,

    CYTOMETRY, Issue 3 2010
    Sergio Matarraz
    Abstract A heterogeneous spectrum of immunophenotypic abnormalities have been reported in myelodysplastic syndromes (MDS). However, most studies are restricted to the analysis of CD34+ cells and/or other major subsets of CD34, cells, frequently not exploring the diagnostic and prognostic impact of immunophenotyping. Methods: We propose for the first time an immunophenotypic score (IS) based on the altered distribution and immunophenotypic features of maturing/mature compartments of bone marrow (BM) hematopoietic cells in 56 patients with MDS that could contribute to a refined diagnosis and prognostic evaluation of the disease. Results: Although MDS-associated phenotypes were detected in reactive BM, the overall immunophenotypic profile of BM cells allowed an efficient discrimination between MDS and both normal and reactive BM, once the number and degree of severity of the abnormalities detected per patient were simultaneously considered in the proposed IS. Interestingly, increasingly higher IS were found among patients with MDS showing adverse prognostic factors and in low- versus high-grade cases. The most informative prognostic factors included the number of CD34+ cells, presence of aberrant CD34,/CD117+ precursors, decreased mature neutrophils and CD34, erythroid precursors, and increased numbers of CD36,/lo erythroid precursors; in addition, the IS was an independent prognostic factor for overall survival. Conclusions: Assessment of immunophenotypic abnormalities of maturing/mature BM cells allows an efficient discrimination between MDS and both normal and reactive BM, once the number and degree of severity of the abnormalities detected are simultaneously scored. Interestingly, progressively higher IS were found among patients with MDS with adverse prognostic features and shorter overall survival. © 2010 Clinical Cytometry Society [source]


    DNA ploidy and cell cycle analyses in the bone marrow cells of patients with megaloblastic anemia using laser scanning cytometry,

    CYTOMETRY, Issue 2 2008
    Takayuki Tsujioka
    Abstract Background: Megaloblastic anemias are characterized by several hematopoietic cells with dysplastic nuclear morphology. The analyses of DNA ploidy and cell cycle of these cells are important to understand the property of such diseases. Methods: As laser scanning cytometry (LSC) is a useful tool to evaluate the morphology of the cells fixed on the slide glass together with the quantitative analysis of the fluorescence information of each cell by rapid scanning of the specimens, the authors examined the DNA ploidy and cell cycle of six cases with megaloblastic anemia using LSC. Results: Giant neutrophilic series such as giant metamyelocytes and giant band cells were found to have extraordinarily higher DNA ploidy, while hypersegmented neutrophils represented the normal diploid pattern like normal neutrophils. As to megaloblasts, cell cycle analysis showed that the proportion of the cells in S phase was increased as compared with the case of normal erythroblasts. Conclusions: The present study clearly demonstrates the abnormal aspects of the hematopoietic cells with megaloblastic anemia from the viewpoint of the DNA ploidy and cell cycle analyzed by the use of LSC. © 2007 Clinical Cytometry Society. [source]


    A European interlaboratory testing of three well-known procedures for immunocytochemical detection of epithelial cells in bone marrow.

    CYTOMETRY, Issue 6 2006
    Results from analysis of normal bone marrow
    Abstract Background: This investigation intended to study the unspecific background to be expected in normal bone marrow (BM), comparing three well recognized protocols for immunocytochemical detection of disseminated carcinoma cells. The interlaboratory variation in screening and evaluation of stained cells was analyzed and different screening methods were compared. Methods: BM mononuclear cells (BM MNC) from 48 normal BMs were immunostained in parallel by three participating laboratories. The protocols, based on three different anti-cytokeratin antibodies, have all been in common use for detection of disseminated carcinoma cells: the A45-B/B3 protocol (Hamburg), the CK2 protocol (Augsburg) and the AE1AE3 protocol (Oslo). For all protocols, the immunostained cells were visualized by the same alkaline-phosphatase (AP) detection system (APAAP) followed by detection of the cells by manual screening and by two different automated screening systems (ACIS from Chromavision and MDS1 from Applied Imaging). Detected AP-visualized cells were morphologically classified into unambiguous hematopoietic (Uhc) and questionable cells (Qc, potentially interpreted as tumor cells). Results: Seven of 48 BMs (15%) harbored ,1 AP-visualized cell(s) among 1 × 106 BM MNC, both for the A45-B/B3- and for the AE1AE3 protocol, while for CK2 a higher proportion of BMs (21 BMs; 44%) harbored AP-visualized cells (P < 0.01, McNemar's test). The number of Qc was, for all protocols, 1 log lower than the total number of AP-visualized cells. On average, the frequency of Qc was 0.04, 0.08, and 0.02 per 106 BM MNC with A45-B/B3, CK2 and AE1AE3, respectively, and the number of Qc-positive BMs 1, 4, and 1. The MDS1 screening sensitivity was similar to manual screening, while ACIS detected fewer cells (P < 0.001, McNemar's test). Conclusions: All protocols resulted in AP-visualization of occasional hematopoietic cells. However, morphological classification brings the specificity to a satisfactory high level. Approximately 10% of AP-visualized cells were categorized "questionable". The CK2 protocol turned out less specific than the A45-B/B3 and AE1AE3 protocols. © 2006 International Society for Analytical Cytology. [source]


    C-Kit receptor (CD117) expression on myeloblasts and white blood cell counts in acute myeloid leukemia

    CYTOMETRY, Issue 1 2004
    Jolanta Wo
    Abstract Background The c-Kit receptor is considered to play a crucial role in hematopoiesis. Induction of mobilization of hematopoietic cells in the bone marrow requires cooperative signaling through c-Kit and c-Kit ligand pathway, and these interactions are important in the retention of stem cells within the bone marrow. Therefore, we analyzed c-Kit density on the leukemic myeloblasts of patients with acute myeloid leukemia (AML) in relation to white blood cell count (WBC) in the peripheral blood. Methods Bone marrow aspirates collected from patients with AML and bone marrow aspirates and leukapheresis products after granulocyte colony-stimulating factor blood mobilization from adult volunteers were studied. To determine the level of c-Kit receptor expression, we applied quantitative (relative fluorescence intensity and antibody binding per cell) cytometric methods. Results Our data showed negative correlation between the level of c-Kit expression intensity on myeloblasts and the number of leukocytes in blood of AML patients. The c-Kit receptor density on myeloblasts in patients with low WBC was significantly stronger than that on myeloblasts in patients with high WBC. In the latter patient group, the density c-Kit receptor on myeloblasts was similar to that on CD34+ cells in mobilized peripheral blood. Conclusions The obtained data suggest an involvement of c-Kit receptor in the regulation of leukemic myeloblasts egress to the peripheral blood. © 2004 Wiley-Liss, Inc. [source]


    Differentiation trapping screen in live culture for genes expressed in cardiovascular lineages

    DEVELOPMENTAL DYNAMICS, Issue 2 2004
    Weisheng V. Chen
    Abstract We have developed a gene trap vector that transduces an EGFP-neo fusion gene (Eno) to monitor the expression of trapped genes in living cells and embryos. Upon in vitro differentiation, most gene-trapped embryonic stem (ES) cell clones exhibited detectable green fluorescence in various specialized cell types, which can be followed in the live culture in real time. Populations of ES cell-derived cardiomyocytes, smooth muscle cells, vascular endothelial cells, and hematopoietic cells were readily recognized by their distinctive morphologies coupled with unique activities, allowing efficient screening for clones with trapped genes expressed in cardiovascular lineages. Applying G418 selection in parallel differentiation cultures further increased detection sensitivity and screening throughput by enriching reporter-expressing cells with intensified green fluorescent protein signals. Sequence analyses and chimera studies demonstrated that the expression of trapped genes in vivo closely correlated with the observed lineage specificity in vitro. This provides a strategy to identify and mutate genes expressed in lineages of interest for further functional studies. Developmental Dynamics 229:319,327, 2004. © 2004 Wiley-Liss, Inc. [source]


    Protection of hematopoietic cells from O6 -alkylation damage by O6 -methylguanine DNA methyltransferase gene transfer: studies with different O6 -alkylating agents and retroviral backbones

    EUROPEAN JOURNAL OF HAEMATOLOGY, Issue 1 2001
    Michael Jansen
    Abstract: Overexpression of O6 -methylguanine DNA methyltransferase (MGMT) can protect hematopoietic cells from O6 -alkylation damage. To identify possible clinical applications of this technology we compared the effect of MGMT gene transfer on the hematotoxicity induced by different O6 -alkylating agents in clinical use: the chloroethylnitrosoureas ACNU, BCNU, CCNU and the tetrazine derivative temozolomide. In addition, various retroviral vectors expressing the MGMT-cDNA were investigated to identify optimal viral backbones for hematoprotection by MGMT expression. Protection from ACNU, BCNU, CCNU or temozolomide toxicity was evaluated utilizing a Moloney murine leukemia virus-based retroviral vector (N2/Zip-PGK-MGMT) to transduce primary murine bone marrow cells. Increased resistance in murine colony-forming units (CFU) was demonstrated for all four drugs. In comparison to mock-transduced controls, after transduction with N2/Zip-PGK-MGMT the IC50 for CFU increased on average 4.7-fold for ACNU, 2.5-fold for BCNU, 6.3-fold for CCNU and 1.5-fold for temozolomide. To study the effect of the retroviral backbone on hematoprotection various vectors expressing the human MGMT-cDNA from a murine embryonic sarcoma virus LTR (MSCV-MGMT) or a hybrid spleen focus-forming/murine embryonic sarcoma virus LTR (SF1-MGMT) were compared with the N2/Zip-PGK-MGMT vector. While all vectors increased resistance of transduced human CFU to ACNU, the SF1-MGMT construct was most efficient especially at high ACNU concentrations (8,12 µg/ml). Similar results were obtained for protection of murine high-proliferative-potential colony-forming cells. These data may help to optimize treatment design and retroviral constructs in future clinical studies aiming at hematoprotection by MGMT gene transfer. [source]


    The adhesion receptor CD155 determines the magnitude of humoral immune responses against orally ingested antigens

    EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 8 2007
    Michael
    Abstract CD155, originally known as the cellular receptor for poliovirus, is the founding member of a subfamily of immunoglobulin-like adhesion receptors. Apart from its function in establishing adherens junctions between contacting epithelial cells, the engagement of CD155 with two recently identified ligands, CD226 and CD96, mediates immunologically relevant processes such as NK cell-driven killing of tumor cells in humans. Here we report on the generation and immunological analysis of mice constitutively deficient of CD155. Moreover, the expression profile of CD155 on hematopoietic cells has been determined using newly established antibodies. CD155-deficient mice develop normally without displaying an overt phenotype. However, the animals are distinguished by distinct deficits in the development of a regular humoral immune response. Whereas systemic challenges revealed no differences, orally administered antigen evoked less efficient IgG and IgA antibody responses despite of normal IgM titers when compared to wild-type mice. Therefore, CD155 may assist in an efficient humoral immune response generated within the intestinal immune system. [source]


    Absence of hematopoiesis from transplanted olfactory bulb neural stem cells

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 3 2004
    María J. Yusta-Boyo
    Abstract Neural stem cells giving rise to neurons and glia cells have been isolated from the embryonic and adult central nervous system. The extent to which they are able to differentiate into cells of non-neural lineages, such as the hematopoietic lineage, is nonetheless unclear. We previously reported the isolation of stem cells from the mouse olfactory bulb neuroepithelium. In the present study, we analysed whether olfactory bulb stem cells (OBSC) can generate cells with hematopoietic features. Cells were prepared from the olfactory bulbs of transgenic mice expressing enhanced green fluorescent protein (EGFP). In culture, transgenic cells proliferated with the same kinetics as wild-type cells. Following mitogen removal, both cell types gave rise to similar numbers of neurons, astrocytes and oligodendrocytes, indicating that EGFP overexpression does not alter OBSC proliferation and differentiation patterns. When these cells were injected into the tail vein of irradiated mice, no hematopoietic cells derived from the OBSC could be recovered in their peripheral blood, spleen or bone marrow. By contrast, when OBSC were transplanted into the adult brain, EGFP-positive cells were found in the striatum and corpus callosum; differentiated cells expressed antigenic markers of neurons and astrocytes. These results suggest that embryonic olfactory bulb stem cells are not endowed with the potential to produce hematopoiesis. [source]


    Characterization of a hemocyte intracellular fatty acid-binding protein from crayfish (Pacifastacus leniusculus) and shrimp (Penaeus monodon)

    FEBS JOURNAL, Issue 13 2006
    Irene Söderhäll
    Intracellular fatty acid-binding proteins (FABPs) are small members of the superfamily of lipid-binding proteins, which occur in invertebrates and vertebrates. Included in this superfamily are the cellular retinoic acid-binding proteins and retinol-binding proteins, which seem to be restricted to vertebrates. Here, we report the cDNA cloning and characterization of two FABPs from hemocytes of the freshwater crayfish Pacifastacus leniusculus and the shrimp Penaeus monodon. In both these proteins, the binding triad residues involved in interaction with ligand carboxylate groups are present. From the sequence and homology modeling, the proteins are probably FABPs and not retinoic acid-binding proteins. The crayfish transcript (plFABP) was detected at high level in hemocytes, hepatopancreas, intestine and ovary and at low level in hematopoietic tissue and testis. Its expression in hematopoietic cells varied depending on the state of the crayfish from which it was isolated. Expression was 10,15 times higher in cultures isolated from crayfish with red colored plasma, in which hemocyte synthesis was high, if retinoic acid was added to the culture medium. In normal colored crayfish, with normal levels of hemocytes, no increase in expression of p1FABP was detected. Two other putative plFABP ligands, stearic acid and oleic acid, did not have any effect on plFABP expression in hematopoietic cells. These results suggest that retinoic acid-dependent signaling may be present in crustaceans. [source]


    BCL11A is a SUMOylated protein and recruits SUMO-conjugation enzymes in its nuclear body

    GENES TO CELLS, Issue 9 2008
    Takeshi Kuwata
    BCL11A/EVI9 is a zinc-finger protein predominantly expressed in brain and hematopoietic cells. Previous studies show that BCL11A is involved in acute myelomonocytic leukemia and chronic lymphoid leukemia in mouse and human, respectively. Moreover, BCL11A is localized in the characteristic nuclear body in which BCL6 is co-localized. However, the significance of BCL11A in leukemogenesis and nuclear function remains unknown. In this study we show that BCL11A interacts with UBC9, a small ubiquitin-like modifier (SUMO) E2 conjugating enzyme, and recruits SUMO1 into the nuclear body. A lysine residue at amino acid 634 of BCL11A is SUMOylated but not required for the SUMO1 recruitment. The N-terminal region of BCL11A is responsible for SUMO1 recruitment as well as its nuclear body formation. We also show that SENP2, a SUMO specific peptidase, is co-localized in the nuclear body. These results suggest that BCL11A could be involved in the SUMO conjugation system, and that BCL11A might play an important role in protein modification. [source]


    Over-expression of c-Myb increases the frequency of hemogenic precursors in the endothelial cell population

    GENES TO CELLS, Issue 8 2006
    Guoyou Dai
    Definitive hematopoiesis has been proposed to arise from hemogenic endothelial cells during mouse embryogenesis. The c- myb proto-oncogene is essential for the development of definitive hematopoiesis and was reported to be activated in hemogenic endothelial cells. To investigate whether c-Myb is involved in regulating the development of hemogenic endothelial cells, we conditionally induced c- myb over-expression during the in vitro differentiation of embryonic stem cells. VE-cadherin+ CD45, cells inducibly expressing c-Myb showed an increase in multilineage colony formation as well as an augmented capacity of the colony forming cells to self-renew in vitro under the condition that only the endogenous c- myb gene was expressed during differentiation of hematopoietic cells. Over-expression of c-Myb in the endothelial population led to activation of genes associated with definitive hematopoiesis such as Runx1, Hoxb4, Mll and Etv6. Our data provide evidence that c-Myb is able to exert an effect in endothelial cells which fosters the establishment of their hemogenic potential. [source]


    microRNAs in acute myeloid leukemia: Expression patterns, correlations with genetic and clinical parameters, and prognostic significance

    GENES, CHROMOSOMES AND CANCER, Issue 3 2010
    Rotraud Wieser
    Acute myeloid leukemia (AML) is a malignant disease of hematopoietic cells whose emergence, course, and prognosis is affected by specific recurrent genetic alterations like chromosome aberrations and point mutations, as well as by changes in the expression of certain genes. In the past 2 years, microRNAs (miRNAs),a novel class of small RNA molecules involved in posttranscriptional gene regulation,have also been shown to be aberrantly expressed in AML. Furthermore, specific miRNA expression patterns were found to be associated with certain genetic and cytogenetic alterations in this disease, and two studies identified miRNAs whose expression levels were predictive of survival. Interestingly, the results of these analyses showed only very limited congruence. This review summarizes published reports on the expression patterns of miRNAs in AML, and discusses possible reasons for the differences in their results. © 2009 Wiley-Liss, Inc. [source]


    Identification of genes with abnormal expression changes in acute myeloid leukemia

    GENES, CHROMOSOMES AND CANCER, Issue 1 2008
    Derek L. Stirewalt
    Acute myeloid leukemia (AML) is one of the most common and deadly forms of hematopoietic malignancies. We hypothesized that microarray studies could identify previously unrecognized expression changes that occur only in AML blasts. We were particularly interested in those genes with increased expression in AML, believing that these genes may be potential therapeutic targets. To test this hypothesis, we compared gene expression profiles between normal hematopoietic cells from 38 healthy donors and leukemic blasts from 26 AML patients. Normal hematopoietic samples included CD34+ selected cells (N = 18), unselected bone marrows (N = 10), and unselected peripheral bloods (N = 10). Twenty genes displayed AML-specific expression changes that were not found in the normal hematopoietic cells. Subsequent analyses using microarray data from 285 additional AML patients confirmed expression changes for 13 of the 20 genes. Seven genes (BIK, CCNA1, FUT4, IL3RA, HOMER3, JAG1, WT1) displayed increased expression in AML, while 6 genes (ALDHA1A, PELO, PLXNC1, PRUNE, SERPINB9, TRIB2) displayed decreased expression. Quantitative RT/PCR studies for the 7 over-expressed genes were performed in an independent set of 9 normal and 21 pediatric AML samples. All 7 over-expressed genes displayed an increased expression in the AML samples compared to normals. Three of the 7 over-expressed genes (WT1, CCNA1, and IL3RA) have already been linked to leukemogenesis and/or AML prognosis, while little is known about the role of the other 4 over-expressed genes in AML. Future studies will determine their potential role in leukemogenesis and their clinical significance. This article contains Supplementary Material available at http://www.interscience.wiley.com/jpages/1045-2257/suppmat. © 2007 Wiley-Liss, Inc. [source]


    ABCG2 (BCRP) expression in normal and malignant hematopoietic cells

    HEMATOLOGICAL ONCOLOGY, Issue 3 2003
    Brian L. Abbott
    Abstract ABCG2 (BCRP) is a member of the ATP-binding cassette (ABC) family of cell surface transport proteins. ABCG2 expression occurs in a variety of normal tissues, and is relatively limited to primitive stem cells. ABCG2 expression is associated with the side population (SP) phenotype of Hoechst 33342 efflux. The substrate profile of ABCG2 includes the antineoplastic drugs primarily targeting topoisomerases, including anthracyclines and camptothecins. More recently, pheophorbide, a chlorophyll-breakdown product, and protoporhyrin IX have been described as ABCG2 substrates, perhaps indicating a physiologic role of cytoprotection of primitive cells. Also, mice lacking ABCG2 expression have no intrinsic stem cell defects, although there is a remarkable increase in toxicity with antineoplastic drugs that are ABCG2 substrates, and also a photosensitivity resembling protoporphyria. Like other members of the ABC family, such as MDR1 and MRP1, ABCG2 is expressed in a variety of malignancies. Despite numerous reports of ABCG2 expression in AML, there is little evidence that ABCG2 expression is correlated with an adverse clinical outcome. This review will focus on the potential usefulness of ABCG2 as a marker primitive stem cells and possible physiologic roles of ABCG2 in protection of primitive stem cell populations, and potential methods of overcoming ABCG2-associated drug resistance in anticancer therapy. Copyright © 2003 John Wiley & Sons, Ltd. [source]


    Efficient generation of human hepatocytes by the intrahepatic delivery of clonal human mesenchymal stem cells in fetal sheep,

    HEPATOLOGY, Issue 6 2007
    Jason Chamberlain
    Alternative methods to whole liver transplantation require a suitable cell that can be expanded to obtain sufficient numbers required for successful transplantation while maintaining the ability to differentiate into hepatocytes. Mesenchymal stem cells (MSCs) possess several advantageous characteristics for cell-based therapy and have been shown to be able to differentiate into hepatocytes. Thus, we investigated whether the intrahepatic delivery of human MSCs is a safe and effective method for generating human hepatocytes and whether the route of administration influences the levels of donor-derived hepatocytes and their pattern of distribution throughout the parenchyma of the recipient's liver. Human clonally derived MSCs were transplanted by an intraperitoneal (n = 6) or intrahepatic (n = 6) route into preimmune fetal sheep. The animals were analyzed 56,70 days after transplantation by immunohistochemistry, enzyme-linked immunosorbent assay, and flow cytometry. The intrahepatic injection of human MSCs was safe and resulted in more efficient generation of hepatocytes (12.5% ± 3.5% versus 2.6% ± 0.4%). The animals that received an intrahepatic injection exhibited a widespread distribution of hepatocytes throughout the liver parenchyma, whereas an intraperitoneal injection resulted in a preferential periportal distribution of human hepatocytes that produced higher amounts of albumin. Furthermore, hepatocytes were generated from MSCs without the need to first migrate/lodge to the bone marrow and give rise to hematopoietic cells. Conclusion: Our studies provide evidence that MSCs are a valuable source of cells for liver repair and regeneration and that, by the alteration of the site of injection, the generation of hepatocytes occurs in different hepatic zones, suggesting that a combined transplantation approach may be necessary to successfully repopulate the liver with these cells. (HEPATOLOGY 2007.) [source]


    Hematopoietic mobilization in mice increases the presence of bone marrow,derived hepatocytes via in vivo cell fusion,

    HEPATOLOGY, Issue 1 2006
    Oscar Quintana-Bustamante
    The mechanisms for in vivo production of bone marrow,derived hepatocytes (BMDHs) remain largely unclear. We investigated whether granulocyte colony,stimulating factor (G-CSF),mediated mobilization of hematopoietic cells increases the phenomenon. Recurrent liver injury in mice expressing green fluorescent protein (EGFP) in all hematopoietic-derived cells was produced by 3 months of carbon tetrachloride (CCL4) injections. Histologically, there were necrotic foci with histiocyte-rich infiltrates, but little oval cell proliferation. Subsequently, some animals were mobilized with G-CSF for 1, 2, or 3 weeks. Animals were sacrificed 1 month after growth factor treatment. BMDH percentages were lower than previously reported, though G-CSF mobilization significantly augmented BMDH production in injured livers. BMDHs originating from in vivo fusion were evaluated by transplanting female EGFP+ cells into male mice. Binucleated, EGFP+ hepatocytes with one Y chromosome, indicating fusion, were identified. In conclusion, (1) mobilization of hematopoietic cells increases BMDH production and (2) as with the FAH-null model, the first model demonstrating hematopoietic/hepatocyte fusion, recurring CCl4 -induced injury has macrophage-rich infiltrates, a blunted oval cell response, and a predominantly in vivo fusion process for circulating cell engraftment into the liver. These findings open the possibility of using hematopoietic growth factors to treat nonhematopoietic degenerative diseases. (HEPATOLOGY 2006;43:108,116.) [source]


    Soluble syndecan-1 (sCD138) as a prognostic factor independent of mutation status in patients with chronic lymphocytic leukemia

    INTERNATIONAL JOURNAL OF LABORATORY HEMATOLOGY, Issue 1 2009
    I. JILANI
    Summary Syndecan-1 (sCD138) is a transmembrane heparan sulfate-bearing proteoglycan expressed in epithelial cells as well as hematopoietic cells that demonstrate plasmacytoid differentiation. Higher levels of sCD138 correlate with poor outcome in myeloma. We examined the association of circulating sCD138 levels in plasma with clinical behavior in 104 patients with chronic lymphocytic leukemia. sCD138 levels were significantly higher in patients (median, 52.8 ng/ml; range, 13.4,252.7 ng/ml) than in healthy control subjects (median, 19.86; range, 14.49,33.14 ng/ml) (P < 0.01). Elevated sCD138 (>median, 52.8 ng/ml) was associated with significantly shorter survival (P = 0.0004); this association was independent of IgVH mutation status, ,2-microglobulin (,2-M) level, and treatment history. Patients with mutated IgVH but high sCD138 levels (>52.8 ng/ml) had significantly shorter survival than those with mutated IgVH and lower levels of sCD138. Similarly, patients with unmutated IgVH but high sCD138 levels had significantly shorter survival than those with lower sCD138 levels and unmutated IgVH (P = 0.007). In a multivariate Cox regression model, only Rai stage, ,2-M, and sCD138 remained predictors of survival. These data suggest that sCD138 when combined with ,2-M and Rai stage, may replace the need for testing IgVH mutation status. [source]


    Recovery of normal autologous myelopoiesis after graft rejection following allogeneic bone marrow transplant for agnogenic myeloid metaplasia

    INTERNATIONAL JOURNAL OF LABORATORY HEMATOLOGY, Issue 2 2006
    S. ALKINDI
    Summary Allogeneic hematopoietic transplantation is the only currently available therapy that has the potential to cure agnogenic myeloid metaplasia (AMM) or primary myelofibrosis (PMF). Amelioration of fibrosis and eradication of the abnormal clone is thought to occur through the repopulation of marrow by donor-derived hematopoiesis and graft- vs. -host reaction leading to graft vs. tumor effect. We report here a 50-year-old female with AMM/PMF, conditioned with busulfan and cyclophosphamide, who rejected a single locus (HLA-B) mismatched bone marrow transplant from her daughter, but recovered normal autologous hematopoiesis with disappearance of marrow fibrosis and extramedullary hematopoiesis. Variable number tandem repeats (VNTR) analysis showed a gradual loss of donor-derived hematopoietic cells with recovery of autologous hematopoiesis. This case therefore illustrates that eradication of AMM/PMF in this patient with myeloablative chemotherapy combined with a transient allogeneic effect was sufficient to suppress the abnormal stem cell clone associated with AMM/PMF with subsequent cure. [source]


    Identification of therapeutically relevant mHags and strategies for mHag-based immunotherapy after allogeneic HSCT: where do we stand?

    ISBT SCIENCE SERIES: THE INTERNATIONAL JOURNAL OF INTRACELLULAR TRANSPORT, Issue n1 2010
    B. Eiz-Vesper
    Minor histocompatibility antigens (mHags) play a major role in graft-versus-host disease (GvHD) and graft-versus-leukaemia (GvL) effect following human leucocyte antigen (HLA)-matched hematopoietic stem cell transplantation (HSCT). These antigens are defined as immunogenic peptides derived from polymorphic proteins and can be recognized by allogeneic cytotoxic T cells (CTLs) in the context of HLA molecules. The tissue distribution of mHags and HLA molecules influences the clinical outcome of T-cell responses to these antigens. Differential T-cell recognition of mHags specifically expressed in hematopoietic cells, including malignant cells from the recipient, may result in a beneficial GvL effect without detrimental GvHD. Furthermore, T-cell responses against proteins solely expressed in hematopoietic cell lineages from which the malignancy is derived may be appropriate mediators of GvL reactivity without GvHD induction. mHags with hematopoiesis-restricted expression may therefore serve as primary targets of the T-cell-mediated GvL/graft-versus-tumour (GvT) effect following HLA-identical HSCT. This paper reviews the recent findings on methods for identification of mHags specifically functioning as GvL/GvT targets and outlines perspectives for the development of novel strategies for mHag-based immunotherapy. [source]


    RANK Expression as a Cell Surface Marker of Human Osteoclast Precursors in Peripheral Blood, Bone Marrow, and Giant Cell Tumors of Bone

    JOURNAL OF BONE AND MINERAL RESEARCH, Issue 9 2006
    Gerald J Atkins
    Abstract RANK expression in vivo on hematopoietic subsets including pre-osteoclasts, identified by monoclonal antibodies, has not been described. We describe the lineages that express RANK in bone marrow, peripheral blood, and GCTs. We show that CD14+RANKhigh cells constitute a circulating pre-osteoclast pool. Introduction: The expression of RANK by subsets of hematopoietic cells has not been adequately studied in humans. While attributed to the monocytoid lineage, the phenotype of the pre-osteoclast (pre-OC) with respect to RANK expression in vivo remains unclear. We tested monoclonal antibodies (MAbs) raised against the extracellular domain of recombinant human RANK for reactivity with normal peripheral blood (PB) and bone marrow (BM) mononuclear cells (PBMNCs and BMMNCs, respectively). We also tested reactivity with giant cell tumor cells (GCT), a confirmed source of pre-OC and mature OCs. Materials and Methods: Human PBMNCs, BMMNCs, and GCT cells were analyzed for reactivity with anti-RANK MAbs by flow cytometry in combination with hematopoietic lineage restricted markers. GCTs were also analyzed by immunofluorescence. CD14+ monocytoid cells were sorted by fluorescence-activated cell sorting (FACS) based on their relative RANK expression and cultured under OC-forming conditions. Results: RANK+ cells were detected similarly by three independent anti-RANK MAbs. One MAb (80736) immunoprecipitated RANK,RANKL complexes from surface-biotinylated GCT lysates. Using dual-color flow cytometry, RANK was detected on CD14+ (monocytoid), CD19+ (B-lymphoid), CD56+ (NK cell), and glycophorin A+ erythroid progenitors. Minor populations of both CD3+ T lymphocytes and BM CD34+ hematopoietic progenitors also expressed cell surface RANK. In GCTs, RANK expression was identified on mononuclear CD45+CD14+,V,3+c-Fms+ cells, likely to be committed pre-OC, and on multinucleated CD45+,V,3+TRACP+ OCs. Importantly, sorted CD14+RANKhigh PBMNCs treated with recombinant RANKL and macrophage-colony stimulating factor (M-CSF) gave rise to approximately twice the number of osteoclasts than RANKmid or RANKlow cells. Conclusions: These results suggest that committed monocytoid RANK+ pre-OCs are represented in the marrow and circulate in the periphery, forming a pool of cells capable of responding rapidly to RANKL. The ability to reliably detect committed pre-OC in peripheral blood could have important clinical applications in the management of diseases characterized by abnormal osteoclastic activity. [source]


    Prostaglandin E2 Induces Expression of Receptor Activator of Nuclear Factor,,B Ligand/Osteoprotegrin Ligand on Pre-B Cells: Implications for Accelerated Osteoclastogenesis in Estrogen Deficiency

    JOURNAL OF BONE AND MINERAL RESEARCH, Issue 7 2000
    Masahiro Kanematsu
    Abstract Estrogen deficiency causes bone loss as a result of accelerated osteoclastic bone resorption. It also has been reported that estrogen deficiency is associated with an increase in the number of pre-B cells in mouse bone marrow. The present study was undertaken to clarify the role of altered B lymphopoiesis and of the receptor activator of nuclear factor-,B ligand (RANKL), a key molecule in osteoclastogenesis, in the bone loss associated with estrogen deficiency. In the presence of prostaglandin E2 (PGE2), the activity to form tartrate-resistant acid phosphatase (TRAP)-positive osteoclast-like cells was significantly greater in bone marrow cells derived from ovariectomized (OVX) mice than in those from sham-operated mice. Northern blot analysis revealed that PGE2 increased the amount of RANKL messenger RNA (mRNA) in bone marrow cells, not only adherent stromal cells but nonadherent hematopoietic cells; among the latter, RANKL mRNA was more abundant in OVX mice than in sham-operated mice and was localized predominantly in B220+ cells. Flow cytometry revealed that most B220+ cells in bone marrow were RANKL positive and that the percentage of RANKL-positive, B220low cells was higher in bone marrow from OVX mice than in that from sham-operated mice. The increase in the expression of RANKL and the percentage of these cells in OVX mice was abolished by the administration of indomethacin in vivo. PGE2 also markedly increased both the level of RANKL mRNA and cell surface expression of RANKL protein in the mouse pre-B cell line 70Z/3. Finally, osteoclastogenic response to PGE2 was reduced markedly by prior depletion of B220+ cells, and it was restored by adding back B220+ cells. Taken together with stimulated cyclo-oxygenase (COX)-2 activity by tumor necrosis factor , (TNF-,) and interleukin-1 (IL-1) in estrogen deficiency, these results suggest that an increase in the number of B220+ cells in bone marrow may play an important role in accelerated bone resorption in estrogen deficiency because B220+ cells exhibit RANKL on the cell surface in the presence of PGE2, thereby leading to accelerated osteoclastogenesis. [source]


    Cytokine Stimulation Promotes Increased Glucose Uptake Via Translocation at the Plasma Membrane of GLUT1 in HEK293 Cells

    JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 6 2010
    Angara Zambrano PhD
    Abstract Interleukin-3 (IL-3) and granulocyte/macrophage colony-stimulating factor (GM-CSF) are two of the best-characterized cell survival factors in hematopoietic cells; these factors induce an increase in Akt activity in multiple cell lines, a process thought to be involved in cellular survival. It is known that growth factors require sustained glucose metabolism to promote cell survival. It has been determined that IL-3 and GM-CSF signal for increased glucose uptake in hematopoietic cells. Interestingly, receptors for IL-3 and GM-CSF are present in several non-hematopoietic cell types but their roles in these cells have been poorly described. In this study, we demonstrated the expression of IL-3 and GM-CSF receptors in HEK293 cells and analyzed their effect on glucose uptake. In these cells, both IL-3 and GM-CSF, increased glucose uptake. The results indicated that this increase involves the subcellular redistribution of GLUT1, affecting glucose transporter levels at the cell surface in HEK293 cells. Also the data directly demonstrates that the PI 3-kinase/Akt pathway is an important mediator of this process. Altogether these results show a role for non-insulin growth factors in the regulation of GLUT1 trafficking that has not yet been directly determined in non-hematopoietic cells. J. Cell. Biochem. 110: 1471,1480, 2010. © 2010 Wiley-Liss, Inc. [source]


    Simultaneous activation of JAK1 and JAK2 confers IL-3 independent growth on Ba/F3 pro-B cells

    JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 2 2005
    Huei-Mei Huang
    Abstract JAK1 and JAK2 are tyrosine kinases involved in the regulation of cell proliferation, differentiation, and survival. These proteins may play a key role in mediating the effects of the cytokine IL-3 on hematopoietic cells. IL-3 induces tyrosine phosphorylation of both JAK1 and JAK2. However, it is not clear whether the activation of JAK1, JAK2, or both is sufficient to confer factor-independent growth in IL-3 dependent cells. To address this issue, fusion proteins CD16/CD7/JAK (CDJAK), comprised of a CD16 extracellular domain, a CD7 transmembrane domain, and a JAK cytoplasmic region (either a wild-type JAK or a dominant negative mutant of JAK) were constructed. We established several Ba/F3 derivatives that stably overexpress the conditionally active forms of either CDJAK1, CDJAK2, or both these fusion proteins. In this study, the autophosphorylation of CDJAK1 or CDJAK2 was induced by crosslinking with anti-CD16 antibody. We demonstrated that, like their wild-type counterparts, CDJAK1 and CDJAK2 were preassociated with the IL-3 receptor beta and alpha subunits, respectively. Furthermore, the simultaneous activation of both CDJAK1 and CDJAK2 fusion proteins, but not either one alone, led to the tyrosine phosphorylation of the IL-3 receptor beta subunit, the activation of downstream signaling molecules, including STAT5, Akt, and MAPK, and the conferring of factor-independent growth to IL-3-dependent Ba/F3 cells. Coexpression of dominant negative mutants CDJAK1KE or CDJAK2KE with wild type CDJAK2 or CDJAK1, respectively, inhibited these activation activities. These results suggest that JAK1 and JAK2 must work cooperatively and not independently and that their actions are dependent on having normal kinase activity to trigger downstream signals leading to IL-3 independent proliferation and survival of Ba/F3 cells. © 2005 Wiley-Liss, Inc. [source]


    Overexpression of GSTA2 protects against cell cycle arrest and apoptosis induced by the DNA inter-strand crosslinking nitrogen mustard, mechlorethamine

    JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 2 2005
    Jingping Xie
    Abstract The effectiveness of bifunctional alkylating nitrogen mustard compounds in chemotherapy is related to their ability to form DNA inter-strand crosslinks. Patients exposed to DNA inter-strand crosslinking (ICL) agents subsequently experience an elevated incidence of myelodysplastic syndromes (MDS) and MDS related acute myeloid leukemia. Fanconi's anemia (FA) patients are deficient in the repair of crosslink DNA damage and they experience a high incidence of MDS. These observations indicate that hematopoietic cells are specific target for the transforming effects of DNA crosslinking damage. Changes in transcript levels were characterized in human hematopoietic cells occurring in response to the nitrogen mustard, mechlorethamine (HN2), but not in response to monofunctional analogs. Only modest changes in a few gene transcripts were detected in HL60 cells exposed to levels of HN2 tittered to maximal dose that caused growth suppression with minimal cell death and allowed eventual resumption of normal cell growth. Under conditions of transient growth suppression, a subset of glutathione-S-transferase (GST) isoenzyme genes was consistently upregulated three to fourfold by HN2, but not by monofunctional analogs. Subsequent efforts to confirm the changes detected by microarray analyses revealed an unexpected dependence on treatment conditions. The GST alpha class A2 subfamily member transcripts were upregulated 24 h after a 1 h exposure to HN2 that caused an extensive, but transient block in late S/G2 cell cycle phase, but were minimally altered with continuous exposure. The 1-h exposure to HN2 caused a transient late S/G2 cell cycle arrest in both the HL-60 cell line and the Colo 320HSR human colon cancer cell line. Overexpression of GSTA2 by transient transfection protected Colo 320HSR cells against both cycle arrest and apoptosis following exposure to HN2. Overexpression of GSTA2 in Colo 320HSR cells induced after exposure to HN2 did not alter cycle arrest or apoptosis. The results indicate that human GSTA2 facilitates the protection of cells from HN2 damage and not repair. Our results are consistent with the possibility that GSTA2 polymorphisms, variable isoenzyme expression, and variable induced expression may be factors in the pathogenesis of MDS. © 2005 Wiley-Liss, Inc. [source]


    Runx1, c-Myb, and C/EBP, couple differentiation to proliferation or growth arrest during hematopoiesis

    JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 4 2002
    Alan D. Friedman
    Abstract Immature hematopoietic precursors proliferate as they differentiate, whereas terminal differentiation is associated with cell cycle arrest. Stem cell lineage commitment and subseqent maturation is regulated predominantly by transcription factors. Runx1 and c-Myb act in early stage hematopoietic cells to both stimulate proliferation and differentiation, whereas C/EBP,, and perhaps other C/EBP family members, block progression from G1 to S and induce terminal maturation. Coupling of differentiation to either proliferation or growth arrest by transcription factors is likely an important regulatory mechanism in multiple developmental systems. J. Cell. Biochem. 86: 624,629, 2002. © 2002 Wiley-Liss, Inc. [source]


    CXCR4-independent rescue of the myeloproliferative defect of the gata1low myelofibrosis mouse model by Aplidin®,

    JOURNAL OF CELLULAR PHYSIOLOGY, Issue 2 2010
    Maria Verrucci
    The discovery of JAK2 mutations in Philadelphia-negative myeloproliferative neoplasms has prompted investigators to evaluate mutation-targeted treatments to restore hematopoietic cell functions in these diseases. However, the results of the first clinical trials with JAK2 inhibitors are not as promising as expected, prompting a search for additional drugable targets to treat these disorders. In this paper, we used the hypomorphic Gata1low mouse model of primary myelofibrosis (PMF), the most severe of these neoplasms, to test the hypothesis that defective marrow hemopoiesis and development of extramedullary hematopoiesis in myelofibrosis is due to insufficient p27Kip1 activity and is treatable by Aplidin®, a cyclic depsipeptide that activates p27Kip1 in several cancer cells. Aplidin® restored expression of Gata1 and p27Kip1 in Gata1low hematopoietic cells, proliferation of marrow progenitor cells in vitro and maturation of megakaryocytes in vivo (reducing TGF-,/VEGF levels released in the microenvironment by immature Gata1low megakaryocytes). Microvessel density, fibrosis, bone growth, and marrow cellularity were normal in Aplidin®-treated mice and extramedullary hematopoiesis did not develop in liver although CXCR4 expression in Gata1low progenitor cells remained low. These results indicate that Aplidin® effectively alters the natural history of myelofibrosis in Gata1low mice and suggest this drug as candidate for clinical evaluation in PMF. J. Cell. Physiol. 225: 490,499, 2010. © 2010 Wiley-Liss, Inc. [source]


    Studies on BrdU labeling of hematopoietic cells: Stem cells and cell lines

    JOURNAL OF CELLULAR PHYSIOLOGY, Issue 2 2003
    Lizhen Pang
    Studies using chronic in vivo BrdU exposure, isolating primitive stem cells, and determining BrdU labeling, indicate that stem cells cycle. BrdU is also incorporated into DNA during damage/repair. DNA, which has incorporated BrdU due to cycle transit is heavier than normal, while the density of DNA with damage/repair incorporation is intermediate. DNA density of purified lineage,rhodamine low (rholow) Hoechst low (Holow) stem cells or FDC-P1 cell line cells,was assessed in vitro, after exposure to cytokines and BrdU (cycling model) or cytokines and BrdU with bleomycin to induce strand breaks and hydroxyurea to halt cycle progression (damage/repair model). We determined DNA density using cesium chloride (CsCl) gradients and either fluorometry or dot blot chemiluminesence. DNA from BrdU labeled cycling Lin-rholoHolo or FDC-P1 cells was heavier than normal DNA, while damage repair DNA had an intermediate density. We then assessed BrdU labeling of Lin-rholoHolo cells in vivo. We found that 70.9% of lin-rholoHolo cells labeled at 5 weeks. DNA density of these cells was low, in the damage/repair range, but similar results were obtained with stem cells, which had proliferated in vivo. Dilution of BrdU in in vitro culture of proliferating FDC-P1 cells also resulted in damage/repair density. We conclude that in vitro BrdU labeling models can distinguish between proliferation and damage/repair, but that we cannot obtain high enough in vivo levels to address this issue. All together, while we cannot absolutely exclude damage/repair as contributing to stem cell BrdU labeling, the data indicate that primitive bone marrow stem cells are probably a cycling population. J. Cell. Physiol. 197: 251,260, 2003© 2003 Wiley-Liss, Inc. [source]


    Molecular basis for detection of invading pathogens in the brain

    JOURNAL OF NEUROSCIENCE RESEARCH, Issue 7 2008
    Jeppe Falsig
    Abstract Classical immunology textbooks have described the central nervous system as an immune-privileged site, i.e., as devoid of inflammatory and host-vs.-graft immunoreactions. This view has been refined, since we now know that hematopoietic cells infiltrate the CNS under certain circumstances and that CNS-resident cells are capable of launching an innate immune response. Microglia cells express an extensive repertoire of pattern-recognition receptors and act as sentinels surveilling the CNS for possible damage or infection. Astrocytes are the most abundant cell type in the brain, and they are capable of launching a strong supportive innate immune response. Novel findings show that both astrocytes and, surprisingly, even neurons express pattern-recognition receptors. Activation of these receptors leads to a functional response, indicating that cells other than microglia are capable of initiating a primary innate immune response against CNS-invading pathogens. Here, we put these findings into context with what has been learned from recent in vitro and in vivo experiments about the initiation of an innate immune response in the brain. © 2007 Wiley-Liss, Inc. [source]