Home About us Contact | |||
Helicoverpa Armigera Hübner (helicoverpa + armigera_hubner)
Selected AbstractsEffects of elevated CO2 associated with maize on multiple generations of the cotton bollworm, Helicoverpa armigeraENTOMOLOGIA EXPERIMENTALIS ET APPLICATA, Issue 1 2010Jin Yin Abstract Under elevated environmental carbon dioxide (CO2), leaf chewers tend to compensate for decreased leaf nutritional quality with increased consumption; mortality and development times also increase and cause a reduction in the fitness of leaf chewers. However, the effect of elevated CO2 on multiple successive generations of these and other insects is not well understood. Furthermore, information about the direct effects of increased environmental CO2 on developmental time and consumption of herbivores is lacking. In this paper, we tested the hypothesis that cascade effects of elevated CO2 through plants, rather than the direct effects of elevated CO2, are the main factors decreasing the fitness of cotton bollworm, Helicoverpa armigera Hübner (Lepidoptera: Noctuidae). We used two series of experiments to quantify the growth, development, and consumption of H. armigera fed on an artificial diet or C4 plants (maize) grown under two CO2 levels (ambient vs. double ambient). In the first series of experiments, elevated CO2 had no effect on the population abundance or individual consumption for three successive generations of cotton bollworms fed on an artificial diet. In the second series of experiments, elevated CO2 reduced population abundance of cotton bollworm larvae for two successive generations when they were fed maize milky grains. The specific effects were longer larval duration, lower fecundity, and decreased rm of cotton bollworms. Furthermore, elevated CO2 increased individual consumption when cotton bollworm was fed maize milky grains for two successive generations and decreased the population's total consumption in the first generation but increased it in the second generation. The results from this study indicate that: (1) The effects of elevated CO2 on three successive generations of cotton bollworm fed on artificial diet were weak, or even non-existent, and (2) elevated CO2 increased the consumption when cotton bollworm were fed maize. Our study also suggests that the damage inflicted by cotton bollworm on maize (a C4 plant) will be seriously affected by the increases in atmospheric CO2, which is unlike our previous results for spring wheat (a C3 plant). [source] Response of multiple generations of cotton bollworm Helicoverpa armigera Hübner, feeding on spring wheat, to elevated CO2JOURNAL OF APPLIED ENTOMOLOGY, Issue 1 2006G. Wu Abstract:, The growth, development and consumption of three successive generations of cotton bollworm, Helicoverpa armigera (Hübner), reared on milky grains of spring wheat grown under elevated CO2 (double-ambient vs. ambient) in open-top chambers (OTCs) were examined. Decreases in protein, total amino acid, water and nitrogen content, and increases in total non-structure carbohydrates (TNCs) and ratio of TNC : nitrogen were found in wheat milky grains grown under elevated CO2 conditions. Changes in quality of wheat grains affected the growth, development and food utilization of H. armigera. Significantly longer larval lifespan for the third generation and lower pupal weight for all generations were observed in cotton bollworm fed on milky grains of spring wheat grown under elevated CO2 conditions. Bollworm fecundity was significantly decreased for the second and third generations under elevated CO2 levels. The consumption, frass per larva and relative consumption rate significantly increased in elevated CO2 compared with ambient CO2 conditions. However, the potential population consumption was significant reduced by elevated CO2 in the second and third generations. The results of this study indicate that elevated CO2 levels adversely affect grain quality, resulting in consistently increased consumption per larva for a longer period to produce less fecund bollworm through generations, suggesting that net damage of cotton bollworm on wheat will be less under elevated atmospheric CO2 levels because increased consumption is offset by slower development and reduced fecundity. [source] Pattern of cross-resistance in pyrethroid-selected populations of Helicoverpa armigera Hübner (Lep., Noctuidae) from IndiaJOURNAL OF APPLIED ENTOMOLOGY, Issue 9-10 2004T. Ramasubramanian Abstract:, In Helicoverpa armigera, withdrawal of selection pressure resulted in a two- to fourfold increase in susceptibility to synthetic pyrethroids and continuous selection enhanced the resistance level by four- to fivefold to the respective pyrethroids at the end of the 14th generation. Populations selected for resistance to one pyrethroid showed positive cross-resistance to all other pyrethroids, but no cross-resistance to endosulfan and thiodicarb. There was a significant increase in mixed-function oxidase activity with advancing generation suggesting its possible role in the positive cross-resistance among the pyrethroids. The induction of carboxyl esterases in pyrethroid-selected populations may have resulted in the activation of indoxacarb, thereby accounting for the observed negative cross-resistance. [source] Field performance and seasonal changes in the efficacy against Helicoverpa armigera (Hübner) of transgenic cotton expressing the insecticidal protein vip3AAGRICULTURAL AND FOREST ENTOMOLOGY, Issue 2 2007Danny J. Llewellyn Abstract 1,Three years of field experiments in Eastern Australia were carried out on transgenic cotton (Gossypium hirsutum L.) event Cot102 expressing the insecticidal protein gene vip3A from Bacillus thuringiensis to evaluate performance against Helicoverpa armigera Hübner. Efficacy, defined as the capacity of plant tissues to induce larval mortality, was determined with a well-validated leaf bioassay fortnightly through the growth cycle of the cotton in each season. 2,Cot102 plants proved highly efficacious against H. armigera, particularly early in the season, although their efficacy declined as the season progressed, in a manner similar to, but not as dramatic as, that observed with commercial Cry1Ac expressing cotton (Bollgard or Ingard cotton). 3,Field surveys indicated that very few larvae survived beyond first instar on intact growing plants. 4,In one season efficacy declined for a period of approximately 20 days after a cool wet period, suggesting that this may have had a detrimental effect on the expression or efficacy of the gene, but this will need to be verified in further replicated trials. 5,Quantitative enzyme-linked immunosorbent assays indicated that there was no dramatic reduction in production of the vip3A protein during growth and maturation of the crop, suggesting that other host plant factors were affecting the efficacy of the insecticidal protein in the insect gut. 6,These data indicate that Cot102 cotton would provide a useful alternative to Bollgard cotton but, given the similar lytic mode of action of vip3A proteins in the insect midgut, there may be similar inherent vulnerabilities to resistance evolution for these proteins if used alone. Pyramiding of the vip3A trait with a second insecticidal gene would appear to be a high priority for achieving sustainable deployment against H. armigera or similar susceptible species. [source] Isovitexin-2,- O -,-[6- O -E- p -coumaroylglucopyranoside] from UV-B irradiated Leaves of Rice, Oryza sativa L. Inhibits Fertility of Helicoverpa armigeraPHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 5 2007Merdelyn T. Caasi-Lit UV-B irradiated rice leaves (Oryza sativa L.) contained four closely related flavonoids, with either an isoorientin or isovitexin aglycone. These flavonoids have previously been purified and characterized, and were added to artificial diets of the African bollworm (Helicoverpa armigera Hübner) at 0.1× concentration found in irradiated rice leaves. Consumption of different diets had relatively small effects on laval, pupal and adult duration, weight and survival, indicating the insects lived near normal life cycles on all diets. However, one of the compounds, flavonoid IIa, isovitexin-2,- O -,-[6- O -E- p -coumaroylglucopyranoside], dramatically reduced the number of fertile eggs laid to 7% of control insects (P < 0.001) when added to insect diets at 18 nmol gFW,1 (14 ppm). A similar antifertility effect was observed when only the male partner consumed diet containing flavonoid IIa, indicating that the reduced fertility may be male specific. In contrast, the fecundity and fertility of insects eating diets containing the closely related flavonoids, isoorientin-2,- O -,-[6- O -E- p -coumaroylglucopyranoside] or isoorientin-2,- O -,-[6- O -E- p -feruloylglucopyranoside], were not significantly different to control diets. [source] |