Home About us Contact | |||
Helical Regions (helical + regions)
Selected AbstractsSite-directed mutagenesis of the active site serine290 in flavanone 3,-hydroxylase from Petunia hybridaFEBS JOURNAL, Issue 3 2000Richard Luka Flavanone 3,-hydroxylase (FHT) catalyzes a pivotal reaction in the formation of flavonoids, catechins, proanthocyanidins and anthocyanidins. In the presence of oxygen and ferrous ions the enzyme couples the oxidative decarboxylation of 2-oxoglutarate, releasing carbon dioxide and succinate, with the oxidation of flavanones to produce dihydroflavonols. The hydroxylase had been cloned from Petunia hybrida and expressed in Escherichia coli, and a rapid isolation method for the highly active, recombinant enzyme had been developed. Sequence alignments of the Petunia hydroxylase with various hydroxylating 2-oxoglutarate-dependent dioxygenases revealed few conserved amino acids, including a strictly conserved serine residue (Ser290). This serine was mutated to threonine, alanine or valine, which represent amino acids found at the corresponding sequence position in other 2-oxoglutarate-dependent enzymes. The mutant enzymes were expressed in E. coli and purified to homogeneity. The catalytic activities of [Thr290]FHT and [Ala290]FHT were still significant, albeit greatly reduced to 20 and 8%, respectively, in comparison to the wild-type enzyme, whereas the activity of [Val290]FHT was negligible (about 1%). Kinetic analyses of purified wild-type and mutant enzymes revealed the functional significance of Ser290 for 2-oxoglutarate-binding. The spatial configurations of the related Fe(II)-dependent isopenicillin N and deacetoxycephalosporin C synthases have been reported recently and provide the lead structures for the conformation of other dioxygenases. Circular dichroism spectroscopy was employed to compare the conformation of pure flavanone 3,-hydroxylase with that of isopenicillin N synthase. A double minimum in the far ultraviolet region at 222 nm and 208,210 nm and a maximum at 191,193 nm which are characteristic for ,-helical regions were observed, and the spectra of the two dioxygenases fully matched revealing their close structural relationship. Furthermore, the spectrum remained unchanged after addition of either ferrous ions, 2-oxoglutarate or both of these cofactors, ruling out a significant conformational change of the enzyme on cofactor-binding. [source] Temperature-dependent structural changes in intrinsically disordered proteins: Formation of ,,helices or loss of polyproline II?PROTEIN SCIENCE, Issue 8 2010Magnus Kjaergaard Abstract Structural characterization of intrinsically disordered proteins (IDPs) is mandatory for deciphering their potential unique physical and biological properties. A large number of circular dichroism (CD) studies have demonstrated that a structural change takes place in IDPs with increasing temperature, which most likely reflects formation of transient ,,helices or loss of polyproline II (PPII) content. Using three IDPs, ACTR, NHE1, and Spd1, we show that the temperature-induced structural change is common among IDPs and is accompanied by a contraction of the conformational ensemble. This phenomenon was explored at residue resolution by multidimensional NMR spectroscopy. Intrinsic chemical shift referencing allowed us to identify regions of transiently formed helices and their temperature-dependent changes in helicity. All helical regions were found to lose rather than gain helical structures with increasing temperature, and accordingly these were not responsible for the change in the CD spectra. In contrast, the nonhelical regions exhibited a general temperature-dependent structural change that was independent of long-range interactions. The temperature-dependent CD spectroscopic signature of IDPs that has been amply documented can be rationalized to represent redistribution of the statistical coil involving a general loss of PPII conformations. [source] Molecular architecture of DesV from Streptomyces venezuelae: A PLP-dependent transaminase involved in the biosynthesis of the unusual sugar desosaminePROTEIN SCIENCE, Issue 5 2007E. Sethe Burgie Abstract Desosamine is a 3-(dimethylamino)-3,4,6-trideoxyhexose found in certain macrolide antibiotics such as the commonly prescribed erythromycin. Six enzymes are required for its biosynthesis in Streptomyces venezuelae. The focus of this article is DesV, which catalyzes the PLP-dependent replacement of a 3-keto group with an amino functionality in the fifth step of the pathway. For this study the three-dimensional structures of both the internal aldimine and the ketimine intermediate with glutamate were determined to 2.05 Å resolution. DesV is a homodimer with each subunit containing 12 ,-helical regions and 12 ,-strands that together form three layers of sheet. The structure of the internal aldimine demonstrates that the PLP-cofactor is held in place by residues contributed from both subunits (Asp 164 and Gln 167 from Subunit I and Tyr 221 and Asn 235 from Subunit II). When the ketimine intermediate is present in the active site, the loop defined by Gln 225 to Ser 228 from Subunit II closes down upon the active site. The structure of DesV is similar to another sugar-modifying enzyme referred to as PseC. This enzyme is involved in the biosynthesis of pseudaminic acid, which is a sialic acid-like nonulosonate found in the flagellin of Helicobacter pylori. In the case of PseC, however, the amino group is transferred to the C-4 rather than the C-3 position. Details concerning the structural analysis of DesV and a comparison of its molecular architecture to that of PseC are presented. [source] Structure and lability of archaeal dehydroquinaseACTA CRYSTALLOGRAPHICA SECTION F (ELECTRONIC), Issue 10 2008Natasha N. Smith Multiple sequence alignments of type I 3-dehydroquinate dehydratases (DQs; EC 4.2.1.10) show that archaeal DQs have shorter helical regions than bacterial orthologs of known structure. To investigate this feature and its relation to thermostability, the structure of the Archaeoglobus fulgidus (Af) DQ dimer was determined at 2.33,Å resolution and its denaturation temperature was measured in vitro by circular dichroism (CD) and differential scanning calorimetry (DSC). This structure, a P212121 crystal form with two 45,kDa dimers in the asymmetric unit, is the first structural representative of an archaeal DQ. Denaturation occurs at 343 ± 3,K at both low and high ionic strength and at 349,K in the presence of the substrate analog tartrate. Since the growth optimum of the organism is 356,K, this implies that the protein maintains its folded state through the participation of additional factors in vivo. The (,,)8 fold is compared with those of two previously determined type I DQ structures, both bacterial (Salmonella and Staphylococcus), which had sequence identities of ,30% with AfDQ. Although the overall folds are the same, there are many differences in secondary structure and ionic features; the archaeal protein has over twice as many salt links per residue. The archaeal DQ is smaller than its bacterial counterparts and lower in regular secondary structure, with its eight helices being an average of one turn shorter. In particular, two of the eight normally helical regions (the exterior of the barrel) are mostly nonhelical in AfDQ, each having only a single turn of 310 -helix flanked by ,-strand and coil. These `protohelices' are unique among evolutionarily close members of the (,,)8 -fold superfamily. Structural features that may contribute to stability, in particular ionic factors, are examined and the implications of having a Tm below the organism's growth temperature are considered. [source] |