Helical Monomers (helical + monomer)

Distribution by Scientific Domains


Selected Abstracts


Self-assembling properties of ionic-complementary peptides,

JOURNAL OF PEPTIDE SCIENCE, Issue 3 2009
Gabriella D'Auria
Abstract Self-complementary synthetic peptides, composed by 8 and 16 residues, were analyzed by CD, NMR and small angle neutron scattering (SANS) techniques in order to investigate the relevance of charge and hydrophobic interactions in determining their self-assembling properties. All the sequences are potentially able to form fibrils and membranes as they share, with the prototype EAK16, a strictly alternating arrangement of polar and nonpolar residues. We find that 16-mer peptides show higher self-assembling propensities than the 8-mer analogs and that the aggregation processes are favored by salts and neutral pH. Peptide hydrophobic character appears as the most relevant factor in determining self-assembling. Solution conformational analysis, diffusion and SANS measurements all together show that the sequences with a higher self-assemble propensity are distributed, in mild conditions, between light and heavy forms. For some of the systems, the light form is mostly constituted by monomers in a random conformation, while the heavy one is constituted by ,-aggregates. In our study we also verified that sequences designed to adopt extended conformation, when dissolved in alcohol-water mixtures, can easily fold in helix structures. In that media, the prototype of the series appears distributed between helical monomers and ,-aggregates. It is worth noticing that the structural conversion from helical monomer to ,-aggregates, mimics ,-amyloid peptide aggregation mechanisms. Copyright © 2008 European Peptide Society and John Wiley & Sons, Ltd. [source]


Channel properties of template assembled alamethicin tetramers,

JOURNAL OF PEPTIDE SCIENCE, Issue 11-12 2003
Dr Hervé Duclohier
Abstract The multiple conductance levels displayed by the antibiotic alamethicin in planar lipid bilayers is explained by a dynamic ,barrel-stave' model, the conducting pore resulting from the aggregation of up to ten helical amphipathic helical monomers. However, the precise assignment of an oligomerization state to a particular single-channel conductance substate is far from being experimentally clear. In addition, it could be useful to tailor a given channel geometry to selectively allow the permeation of solutes with different molecular sizes, whilst retaining a high voltage-dependence. To control the aggregation state of the channel, the TASP (template assembled synthetic proteins) strategy was applied to synthesize structurally defined oligomers, i.e. dimer, trimer, tetramer. The modulation of conductance properties of three alamethicin tetramers with the length and flexibility of the linkers of the ,open' or linear template is described. It is shown that the introduction of an alanine between the contiguous lysines to which are tethered C -terminally modified alamethicin helical monomers stabilizes the open channel states, whereas the alanine substitution by Pro-Gly, a reverse beta-turn promoting motif, increases voltage-dependence and leads to single-channel conductance values more in line with the expected ones from a tetrameric bundle. Copyright © 2003 European Peptide Society and John Wiley & Sons, Ltd. [source]


Conformations within soluble oligomers and insoluble aggregates revealed by resonance energy transfer

BIOPOLYMERS, Issue 4 2010
Jyothi L. Digambaranath
Abstract A fluorescently labeled 20-residue polyglutamic acid (polyE) peptide 20 amino acid length polyglutamic acid (E20) was used to study structural changes which occur in E20 as it co-aggregates with other unlabeled polyE peptides. Resonance energy transfer (RET) was performed using an o -aminobenzamide donor at the N-terminus and 3-nitrotyrosine acceptor at the C-terminus of E20. PolyE aggregates were not defined as amyloid, as they were nonfibrillar and did not bind congo red. Circular dichroism measurements indicate that polyE aggregation involves a transition from ,-helical monomers to aggregated ,-sheets. Soluble oligomers are also produced along with aggregates in the reaction, as determined through size exclusion chromatography. Time-resolved and steady-state RET measurements reveal four dominant E20 conformations: (1) a partially collapsed conformation (24 Å donor,acceptor distance) in monomers, (2) an extended conformation in soluble oligomers (>29 Å donor,acceptor distance), (3) a minor partially collapsed conformation (22 Å donor-acceptor distance) in aggregates, and (4) a major highly collapsed conformation (13 Å donor,acceptor distance) in aggregates. These findings demonstrate the use of RET as a means of determining angstrom-level structural details of soluble oligomer and aggregated states of proteins. © 2009 Wiley Periodicals, Inc. Biopolymers 93: 299,317, 2010. This article was originally published online as an accepted preprint. The "Published Online" date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com [source]