Home About us Contact | |||
Amygdala Activity (amygdala + activity)
Selected AbstractsSerotonergic genes modulate amygdala activity in major depressionGENES, BRAIN AND BEHAVIOR, Issue 7 2007U. Dannlowski Serotonergic genes have been implicated in the pathogenesis of depression probably via their influence on neural activity during emotion processing. This study used an imaging genomics approach to investigate amygdala activity in major depression as a function of common functional polymorphisms in the serotonin transporter gene (5-HTTLPR) and the serotonin receptor 1A gene (5-HT1A -1019C/G). In 27 medicated patients with major depression, amygdala responses to happy, sad and angry faces were assessed using functional magnetic resonance imaging at 3 Tesla. Patients were genotyped for the 5-HT1A -1019C/G and the 5-HTTLPR polymorphism, including the newly described 5-HTT-rs25531 single nucleotide polymorphism. Risk allele carriers for either gene showed significantly increased bilateral amygdala activation in response to emotional stimuli, implicating an additive effect of both genotypes. Our data suggest that the genetic susceptibility for major depression might be transported via dysfunctional neural activity in brain regions critical for emotion processing. [source] Emotional imagery: Assessing pleasure and arousal in the brain's reward circuitryHUMAN BRAIN MAPPING, Issue 9 2010Vincent D. Costa Abstract Research on emotional perception and learning indicates appetitive cues engage nucleus accumbens (NAc) and medial prefrontal cortex (mPFC), whereas amygdala activity is modulated by the emotional intensity of appetitive and aversive cues. This study sought to determine patterns of functional activation and connectivity among these regions during narrative emotional imagery. Using event-related fMRI, we investigate activation of these structures when participants vividly imagine pleasant, neutral, and unpleasant scenes. Results indicate that pleasant imagery selectively activates NAc and mPFC, whereas amygdala activation was enhanced during both pleasant and unpleasant imagery. NAc and mPFC activity were each correlated with the rated pleasure of the imagined scenes, while amygdala activity was correlated with rated emotional arousal. Functional connectivity of NAc and mPFC was evident throughout imagery, regardless of hedonic content, while correlated activation of the amygdala with NAc and mPFC was specific to imagining pleasant scenes. These findings provide strong evidence that pleasurable text-driven imagery engages a core appetitive circuit, including NAc, mPFC, and the amygdala. Hum Brain Mapp, 2010. © 2010 Wiley-Liss, Inc. [source] Amygdala,prefrontal dissociation of subliminal and supraliminal fearHUMAN BRAIN MAPPING, Issue 8 2006Leanne M. Williams Abstract Facial expressions of fear are universally recognized signals of potential threat. Humans may have evolved specialized neural systems for responding to fear in the absence of conscious stimulus detection. We used functional neuroimaging to establish whether the amygdala and the medial prefrontal regions to which it projects are engaged by subliminal fearful faces and whether responses to subliminal fear are distinguished from those to supraliminal fear. We also examined the time course of amygdala-medial prefrontal responses to supraliminal and subliminal fear. Stimuli were fearful and neutral baseline faces, presented under subliminal (16.7 ms and masked) or supraliminal (500 ms) conditions. Skin conductance responses (SCRs) were recorded simultaneously as an objective index of fear perception. SPM2 was used to undertake search region-of-interest (ROI) analyses for the amygdala and medial prefrontal (including anterior cingulate) cortex, and complementary whole-brain analyses. Time series data were extracted from ROIs to examine activity across early versus late phases of the experiment. SCRs and amygdala activity were enhanced in response to both subliminal and supraliminal fear perception. Time series analysis showed a trend toward greater right amygdala responses to subliminal fear, but left-sided responses to supraliminal fear. Cortically, subliminal fear was distinguished by right ventral anterior cingulate activity and supraliminal fear by dorsal anterior cingulate and medial prefrontal activity. Although subcortical amygdala activity was relatively persistent for subliminal fear, supraliminal fear showed more sustained cortical activity. The findings suggest that preverbal processing of fear may occur via a direct rostral,ventral amygdala pathway without the need for conscious surveillance, whereas elaboration of consciously attended signals of fear may rely on higher-order processing within a dorsal cortico,amygdala pathway. Hum Brain Mapp, 2005. © 2005 Wiley-Liss, Inc. [source] Alcoholism and Dampened Temporal Limbic Activation to Emotional FacesALCOHOLISM, Issue 11 2009Ksenija Marinkovic Background:, Excessive chronic drinking is accompanied by a broad spectrum of emotional changes ranging from apathy and emotional flatness to deficits in comprehending emotional information, but their neural bases are poorly understood. Methods:, Emotional abnormalities associated with alcoholism were examined with functional magnetic resonance imaging in abstinent long-term alcoholic men in comparison to healthy demographically matched controls. Participants were presented with emotionally valenced words and photographs of faces during deep (semantic) and shallow (perceptual) encoding tasks followed by recognition. Results:, Overall, faces evoked stronger activation than words, with the expected material-specific laterality (left hemisphere for words, and right for faces) and depth of processing effects. However, whereas control participants showed stronger activation in the amygdala and hippocampus when viewing faces with emotional (relative to neutral) expressions, the alcoholics responded in an undifferentiated manner to all facial expressions. In the alcoholic participants, amygdala activity was inversely correlated with an increase in lateral prefrontal activity as a function of their behavioral deficits. Prefrontal modulation of emotional function as a compensation for the blunted amygdala activity during a socially relevant face appraisal task is in agreement with a distributed network engagement during emotional face processing. Conclusions:, Deficient activation of amygdala and hippocampus may underlie impaired processing of emotional faces associated with long-term alcoholism and may be a part of the wide array of behavioral problems including disinhibition, concurring with previously documented interpersonal difficulties in this population. Furthermore, the results suggest that alcoholics may rely on prefrontal rather than temporal limbic areas in order to compensate for reduced limbic responsivity and to maintain behavioral adequacy when faced with emotionally or socially challenging situations. [source] Reduced amygdala activity during aversive conditioning in human narcolepsyANNALS OF NEUROLOGY, Issue 3 2010Aurélie Ponz PhD Narcolepsy with cataplexy is a sleep-wake disorder caused by a loss of hypothalamic hypocretins. Here we assessed the time course of amygdala activation during aversive conditioning in unmedicated patients with narcolepsy. Unlike healthy matched control subjects, narcolepsy patients had no enhancement of amygdala response to conditioned stimuli and no increase in functional coupling between the amygdala and medial prefrontal cortex. These findings suggest that human narcolepsy is accompanied by abnormal emotional learning, and that, in line with animal data, the hypocretin system and the amygdala are involved in this process. ANN NEUROL 2010;67:394,398 [source] |