Amplicon Vectors (amplicon + vector)

Distribution by Scientific Domains


Selected Abstracts


Hexokinase II gene transfer protects against neurodegeneration in the rotenone and MPTP mouse models of Parkinson's disease,

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 9 2010
Juan Carlos Corona
Abstract A typical feature of Parkinson's disease is the progressive loss of dopaminergic neurons in the substantia nigra, in which inhibition of mitochondrial complex I activity may play an important role. Rotenone or 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) inhibit the mitochondrial complex I and they cause the death of substantia nigra dopaminergic neurons, thereby providing acute murine models of Parkinson's disease. We have found that increasing mitochondrial hexokinase II activity can prevent cell death in neuronal cultures treated with rotenone. As a result, we have studied the effects of hexokinase II gene transfer in vivo using a herpes simplex virus type 1 (HSV-1) amplicon vector. The placHK2 amplicon vector was injected into substantia nigra of mice that were subsequently administered rotenone or MPTP. Overexpression of hexokinase II prevented both rotenone and MPTP-induced dopaminergic neuronal cell death, as well as reducing the associated motor defects. Our results provide the first proof-of-principle that hexokinase II protects against dopaminergic neurodegeneration in vivo, emphasizing the role of this enzyme in promoting neuronal survival. Thus, the increase of hexokinase II expression by gene transfer or other means represents a promising approach to treat Parkinson's and other neurodegenerative diseases. © 2010 Wiley-Liss, Inc. [source]


Generation of stable retrovirus packaging cell lines after transduction with herpes simplex virus hybrid amplicon vectors,

THE JOURNAL OF GENE MEDICINE, Issue 3 2002
Miguel Sena-Esteves
Abstract Background A number of properties have relegated the use of Moloney murine leukemia virus (Mo-MLV)-based retrovirus vectors primarily to ex vivo protocols. Direct implantation of retrovirus producer cells can bypass some of the limitations, and in situ vector production may result in a large number of gene transfer events. However, the fibroblast nature of most retrovirus packaging cells does not provide for an effective distribution of vector producing foci in vivo, especially in the brain. Effective development of new retrovirus producer cells with enhanced biologic properties may require the testing of a large number of different cell types, and a quick and efficient method to generate them is needed. Methods Moloney murine leukemia virus (Mo-MLV) gag-pol and env genes and retrovirus vector sequences carrying lacZ were cloned into different minimal HSV/AAV hybrid amplicons. Helper virus-free amplicon vectors were used to co-infect glioma cells in culture. Titers and stability of retrovirus vector production were assessed. Results Simultaneous infection of two glioma lines, Gli-36 (human) and J3T (dog), with both types of amplicon vectors, generated stable packaging populations that produced retrovirus titers of 0.5,1.2×105 and 3.1,7.1×103 tu/ml, respectively. Alternatively, when cells were first infected with retrovirus vectors followed by infection with HyRMOVAmpho amplicon vector, stable retrovirus packaging populations were obtained from Gli-36 and J3T cells producing retrovirus titers comparable to those obtained with a traditional retrovirus packaging cell line, ,CRIPlacZ. Conclusions This amplicon vector system should facilitate generation of new types of retrovirus producer cells. Conversion of cells with migratory or tumor/tissue homing properties could result in expansion of the spatial distribution or targeting capacity, respectively, of gene delivery by retrovirus vectors in vivo. Copyright © 2002 John Wiley & Sons, Ltd. [source]