AMPK Activation (ampk + activation)

Distribution by Scientific Domains


Selected Abstracts


Regulation of glucose transporter 4 traffic by energy deprivation from mitochondrial compromise

ACTA PHYSIOLOGICA, Issue 1 2009
A. Klip
Abstract Skeletal muscle is the major store and consumer of fatty acids and glucose. Glucose enters muscle through glucose transporter 4 (GLUT4). Upon insufficient oxygen availability or energy compromise, aerobic metabolism of glucose and fatty aids cannot proceed, and muscle cells rely on anaerobic metabolism of glucose to restore cellular energy status. An increase in glucose uptake into muscle is a key response to stimuli requiring rapid energy supply. This chapter analyses the mechanisms of the adaptive regulation of glucose transport that rescue muscle cells from mitochondrial uncoupling. Under these conditions, the initial drop in ATP recovers rapidly, through a compensatory increase in glucose uptake. This adaptive response involves AMPK activation by the initial ATP drop, which elevates cell surface GLUT4 and glucose uptake. The gain in surface GLUT4 involves different signals and routes of intracellular traffic compared with those engaged by insulin. The hormone increases GLUT4 exocytosis through phosphatidylinositol 3-kinase and Akt, whereas energy stress retards GLUT4 endocytosis through AMPK and calcium inputs. Given that energy stress is a component of muscle contraction, and that contraction activates AMPK and raises cytosolic calcium, we hypothesize that the increase in glucose uptake during contraction may also involve a reduction in GLUT4 endocytosis. [source]


AMP-activated protein kinase: a core signalling pathway in the heart

ACTA PHYSIOLOGICA, Issue 1 2009
A. S. Kim
Abstract Over the past decade, AMP-activated protein kinase (AMPK) has emerged as an important intracellular signalling pathway in the heart. Activated AMPK stimulates the production of ATP by regulating key steps in both glucose and fatty acid metabolism. It has an inhibitory effect on cardiac protein synthesis. AMPK also interacts with additional intracellular signalling pathways in a coordinated network that modulates essential cellular processes in the heart. Evidence is accumulating that AMPK may protect the heart from ischaemic injury and limit the development of cardiac myocyte hypertrophy to various stimuli. Heart AMPK is activated by hormones, cytokines and oral hypoglycaemic drugs that are used in the treatment of type 2 diabetes. The tumour suppressor LKB1 is the major regulator of AMPK activity, but additional upstream kinases and protein phosphatases also contribute. Mutations in the regulatory ,2 subunit of AMPK lead to an inherited syndrome of hypertrophic cardiomyopathy and ventricular pre-excitation, which appears to be due to intracellular glycogen accumulation. Future research promises to elucidate the molecular mechanisms responsible for AMPK activation, novel downstream AMPK targets, and the therapeutic potential of targeting AMPK for the prevention and treatment of myocardial ischaemia or cardiac hypertrophy. [source]


AMP-activated protein kinase in contraction regulation of skeletal muscle metabolism: necessary and/or sufficient?

ACTA PHYSIOLOGICA, Issue 1 2009
T. E. Jensen
Abstract In skeletal muscle, the contraction-activated heterotrimeric 5,-AMP-activated protein kinase (AMPK) protein is proposed to regulate the balance between anabolic and catabolic processes by increasing substrate uptake and turnover in addition to regulating the transcription of proteins involved in mitochondrial biogenesis and other aspects of promoting an oxidative muscle phenotype. Here, the current knowledge on the expression of AMPK subunits in human quadriceps muscle and evidence from rodent studies suggesting distinct AMPK subunit expression pattern in different muscle types is reviewed. Then, the intensity and time dependence of AMPK activation in human quadriceps and rodent muscle are evaluated. Subsequently, a major part of this review critically examines the evidence supporting a necessary and/or sufficient role of AMPK in a broad spectrum of skeletal muscle contraction-relevant processes. These include glucose uptake, glycogen synthesis, post-exercise insulin sensitivity, fatty acid (FA) uptake, intramuscular triacylglyceride hydrolysis, FA oxidation, suppression of protein synthesis, proteolysis, autophagy and transcriptional regulation of genes relevant to promoting an oxidative phenotype. [source]


AMPK activators , potential therapeutics for metabolic and other diseases

ACTA PHYSIOLOGICA, Issue 1 2009
G. Zhou
Abstract AMP-activated protein kinase (AMPK)-mediated cellular metabolic responses to tissue-specific and whole-body stimuli play a vital role in the control of energy homeostasis. As a cellular energy-sensing mechanism, AMPK activation stimulates glucose uptake and fat oxidation, while it suppresses lipogenesis and gluconeogenesis. The cumulative effects of AMPK activation lead to beneficial metabolic states in liver, muscle and other peripheral tissues that are critical in the pathogenesis of obesity, type 2 diabetes and related metabolic disorders. Activators of AMPK that target selected tissues hold potential as novel therapeutics for diseases in which altered energy metabolism contributes to aetiology. [source]


Control of p70 ribosomal protein S6 kinase and acetyl-CoA carboxylase by AMP-activated protein kinase and protein phosphatases in isolated hepatocytes

FEBS JOURNAL, Issue 15 2002
Ulrike Krause
Certain amino acids, like glutamine and leucine, induce an anabolic response in liver. They activate p70 ribosomal protein S6 kinase (p70S6K) and acetyl-CoA carboxylase (ACC) involved in protein and fatty acids synthesis, respectively. In contrast, the AMP-activated protein kinase (AMPK), which senses the energy state of the cell and becomes activated under metabolic stress, inactivates by phosphorylation key enzymes in biosynthetic pathways thereby conserving ATP. In this paper, we studied the effect of AMPK activation and of protein phosphatase inhibitors, on the amino-acid-induced activation of p70S6K and ACC in hepatocytes in suspension. AMPK was activated under anoxic conditions or by incubation with 5-aminoimidazole-4-carboxyamide ribonucleoside (AICAr) or oligomycin, an inhibitor of mitochondrial oxidative phosphorylation. Incubation of hepatocytes with amino acids activated p70S6K via multiple phosphorylation. It also activated ACC by a phosphatase-dependent mechanism but did not modify AMPK activation. Conversely, the amino-acid-induced activation of both ACC and p70S6K was blocked or reversed when AMPK was activated. This AMPK activation increased Ser79 phosphorylation in ACC but decreased Thr389 phosphorylation in p70S6K. Protein phosphatase inhibitors prevented p70S6K activation when added prior to the incubation with amino acids, whereas they enhanced p70S6K activation when added after the preincubation with amino acids. It is concluded that (a) AMPK blocks amino-acid-induced activation of ACC and p70S6K, directly by phosphorylating Ser79 in ACC, and indirectly by inhibiting p70S6K phosphorylation, and (b) both activation and inhibition of protein phosphatases are involved in the activation of p70S6K by amino acids. p70S6K adds to an increasing list of targets of AMPK in agreement with the inhibition of energy-consuming biosynthetic pathways. [source]


AMP-activated protein kinase enhances the expression of muscle-specific ubiquitin ligases despite its activation of IGF-1/Akt signaling in C2C12 myotubes

JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 2 2009
Jun F. Tong
Abstract Two muscle-specific ubiquitin ligases (UL), muscle atrophy F box (MAFbx) and muscle RING finger 1 (MuRF1), are crucial for myofibrillar protein breakdown. The insulin like growth factor-1 (IGF-1) pathway inhibits muscle UL expression through Akt-mediated inhibition of FoxO transcription factors, while AMP-activated protein kinase (AMPK) promotes UL expression. The underlying cellular mechanism, however, remains obscure. In this study, the effect of AMPK and its interaction with IGF-1 on ubiquitin ligases expression was investigated. C2C12 myotubes were treated with 0, 0.1, 0.3, and 1.0,mM 5-aminoimidazole-4-carboxamide-1-,- D -ribofuranoside (AICAR) in the presence or absence of 50,ng/ml IGF-1. IGF-1 activated Akt, which enhanced phosphorlytion of FoxO3a at Thr 318/321 and reduced the expression of UL. Intriguingly, though activation of AMPK by 0.3 and 1.0,mM AICAR synergized IGF-1-induced Akt activation, the expression of UL was not attenuated, but strengthened by AMPK activation. AICAR treatment decreased FoxO3a phosphorylation at 318/321 in the cytoplasm and induced FoxO3 nuclear relocation. mTOR inhibition increased basal MAFbx expression and reversed the inhibitory effect of IGF-1 on UL expression. In conclusion, our data show that AMPK activation by AICAR stimulates UL expression despite the activation of Akt signaling, which may be due to the possible antagonistic effect of FoxO phosphorylation by AMPK on phosphorylation by Akt. In addition, AMPK inhibition of mTOR may provide an additional explanation for the enhancement of UL expression by AMPK. J. Cell. Biochem. 108: 458,468, 2009. © 2009 Wiley-Liss, Inc. [source]


EGCG inhibits protein synthesis, lipogenesis, and cell cycle progression through activation of AMPK in p53 positive and negative human hepatoma cells

MOLECULAR NUTRITION & FOOD RESEARCH (FORMERLY NAHRUNG/FOOD), Issue 9 2009
Chi-Hung Huang
Abstract In the previous studies, (,)-epigallocatechin-3-gallate (EGCG) has been shown to have anticarcinogenic effects via modulation in protein expression of p53. Using p53 positive Hep G2 and p53 negative Hep 3B cells, we found that treatment of EGCG resulted in dose-dependent inhibition of cellular proliferation, which suggests that the interaction of EGCG with p53 may not fully explain its inhibitory effect on proliferation. Caloric restriction (CR) reduces the incidence and progression of spontaneous and induced tumors in laboratory rodents. EGCG has multiple beneficial activities similar to those associated with CR. One key enzyme thought to be activated during CR is AMP-activated kinase (AMPK), a sensor of cellular energy levels. Here, we showed that EGCG activated AMPK in both p53 positive and negative human hepatoma cells. The activation of AMPK suppressed downstream substrates, such as mammalian target of rapamycin (mTOR) and eukaryotic initiation factor 4E-binding protein-1 (4E-BP1) and a general decrease in mRNA translation. Moreover, EGCG activated AMPK decreases the activity and/or expression of lipogenic enzymes, such as fatty acid synthase (FASN) and acetyl-CoA carboxylase (ACC). Interestingly, the decision between apoptosis and growth arrest following AMPK activation is greatly influenced by p53 status. In p53 positive Hep G2 cells, EGCG blocked the progression of cell cycle at G1 phase by inducing p53 expression and further up-regulating p21 expression. However, EGCG inducted apoptosis in p53 negative Hep 3B cells. Based on these results, we have demonstrated that EGCG has a potential to be a chemoprevention and anti-lipogenesis agent for human hepatoma cells. [source]


5-Aminoimidazole-4-carboxamide-1-,- d -ribofuranoside Increases Myocardial Glucose Uptake during Reperfusion and Induces Late Pre-conditioning: Potential Role of AMP-Activated Protein Kinase

BASIC AND CLINICAL PHARMACOLOGY & TOXICOLOGY, Issue 1 2009
Steen B. Kristiansen
AMP-activated protein kinase (AMPK) is activated by exercise and 5-aminoimidazole-4-carboxamide-1-,- d -ribofuranoside (AICAR). Early pre-conditioning involves AMPK activation and increased myocardial glucose uptake. The aim of the present study was to determine whether AICAR activates myocardial AMPK and induces late pre-conditioning and whether myocardial glucose uptake during reperfusion was modulated. Twenty-four hours after AICAR treatment or exercise, Wistar rats were subjected to ischaemia and reperfusion in a Langendorff model and compared to control rats. AMPK activity increased immediately 2.5-fold in AICAR-treated animals (P < 0.01) and twofold in exercised animals (P < 0.05). AICAR and exercise reduced infarct size by 60% and 50% (both P < 0.01), respectively, and increased myocardial glucose uptake during reperfusion (AICAR; 45%, P < 0.05, exercise; 40%, P < 0.05). In conclusion, AICAR induces late pre-conditioning and increases myocardial glucose uptake during reperfusion in rat hearts. AICAR and exercise activate AMPK, suggesting a role of AMPK in the signalling mechanisms behind late pre-conditioning. [source]


Expanding roles for AMP-activated protein kinase in neuronal survival and autophagy

BIOESSAYS, Issue 9 2009
Jeroen Poels
Abstract AMP-activated protein kinase (AMPK) is an evolutionarily conserved cellular switch that activates catabolic pathways and turns off anabolic processes. In this way, AMPK activation can restore the perturbation of cellular energy levels. In physiological situations, AMPK senses energy deficiency (in the form of an increased AMP/ATP ratio), but it is also activated by metabolic insults, such as glucose or oxygen deprivation. Metformin, one of the most widely prescribed anti-diabetic drugs, exerts its actions by AMPK activation. However, while the functions of AMPK as a metabolic regulator are fairly well understood, its actions in neuronal cells only recently gained attention. This review will discuss newly emerged functions of AMPK in neuroprotection and neurodegeneration. Additionally, recent views on the role of AMPK in autophagy, an important catabolic process that is also involved in neurodegeneration and cancer, will be highlighted. [source]