AMPK

Distribution by Scientific Domains
Distribution within Life Sciences

Terms modified by AMPK

  • ampk activation
  • ampk activity

  • Selected Abstracts


    Impaired cardiac functional reserve in type 2 diabetic db/db mice is associated with metabolic, but not structural, remodelling

    ACTA PHYSIOLOGICA, Issue 1 2010
    A. Daniels
    Abstract Aim:, To identify the initial alterations in myocardial tissue associated with the early signs of diabetic cardiac haemodynamic dysfunction, we monitored changes in cardiac function, structural remodelling and gene expression in hearts of type 2 diabetic db/db mice. Methods:, Cardiac dimensions and function were determined echocardiographically at 8, 12, 16 and 18 weeks of age. Left ventricular pressure characteristics were measured at 18 weeks under baseline conditions and upon dobutamine infusion. Results:, The db/db mice were severely diabetic already at 8 weeks after birth, showing elevated fasting blood glucose levels and albuminuria. Nevertheless, echocardiography revealed no significant changes in cardiac function up to 18 weeks of age. At 18 weeks of age, left ventricular pressure characteristics were not significantly different at baseline between diabetic and control mice. However, dobutamine stress test revealed significantly attenuated cardiac inotropic and lusitropic responses in db/db mice. Post-mortem cardiac tissue analyses showed minor structural remodelling and no significant changes in gene expression levels of the sarcoplasmic reticulum calcium ATPase (SERCA2a) or ,1-adrenoceptor (,1-AR). Moreover, the phosphorylation state of known contractile protein targets of protein kinase A (PKA) was not altered, indicating unaffected cardiac ,-adrenergic signalling activity in diabetic animals. By contrast, the substantially increased expression of uncoupling protein-3 (UCP3) and angiopoietin-like-4 (Angptl4), along with decreased phosphorylation of AMP-activated protein kinase (AMPK) in the diabetic heart, is indicative of marked changes in cardiac metabolism. Conclusion:, db/db mice show impaired cardiac functional reserve capacity during maximal ,-adrenergic stimulation which is associated with unfavourable changes in cardiac energy metabolism. [source]


    Structure and function of AMP-activated protein kinase

    ACTA PHYSIOLOGICA, Issue 1 2009
    J. S. Oakhill
    Abstract AMP-activated protein kinase (AMPK) regulates metabolism in response to energy demand and supply. AMPK is activated in response to rises in intracellular AMP or calcium-mediated signalling and is responsible for phosphorylating a wide variety of substrates. Recent structural studies have revealed the architecture of the ,,, subunit interactions as well as the AMP binding pockets on the , subunit. The , catalytic domain (1,280) is autoinhibited by a C-terminal tail (313,335), which is proposed to interact with the small lobe of the catalytic domain by homology modelling with the MARK2 protein structure. Two direct activating drugs have been reported for AMPK, the thienopyridone compound A769662 and PTI, which may activate by distinct mechanisms. [source]


    The regulation and function of mammalian AMPK-related kinases

    ACTA PHYSIOLOGICA, Issue 1 2009
    N. J. Bright
    Abstract AMP-activated protein kinase (AMPK) is a key regulator of cellular and whole-body energy homeostasis. Recently, 12 AMPK-related kinases (BRSK1, BRSK2, NUAK1, NUAK2, QIK, QSK, SIK, MARK1, MARK2, MARK3, MARK4 and MELK) were identified that are closely related by sequence homology to the catalytic domain of AMPK. The protein kinase LKB1 acts as a master upstream kinase activating AMPK and 11 of the AMPK-related kinases by phosphorylation of a conserved threonine residue in their T-loop region. Further sequence analyses have identified the eight-member SNRK kinase family as distant relatives of AMPK. However, only one of these is phosphorylated and activated by LKB1. Although much is known about AMPK, many of the AMPK-related kinases remain largely uncharacterized. This review outlines the general similarities in structure and function of the AMPK-related kinases before examining the specific characteristics of each, including a brief discussion of the SNRK family. [source]


    Regulation of glucose transporter 4 traffic by energy deprivation from mitochondrial compromise

    ACTA PHYSIOLOGICA, Issue 1 2009
    A. Klip
    Abstract Skeletal muscle is the major store and consumer of fatty acids and glucose. Glucose enters muscle through glucose transporter 4 (GLUT4). Upon insufficient oxygen availability or energy compromise, aerobic metabolism of glucose and fatty aids cannot proceed, and muscle cells rely on anaerobic metabolism of glucose to restore cellular energy status. An increase in glucose uptake into muscle is a key response to stimuli requiring rapid energy supply. This chapter analyses the mechanisms of the adaptive regulation of glucose transport that rescue muscle cells from mitochondrial uncoupling. Under these conditions, the initial drop in ATP recovers rapidly, through a compensatory increase in glucose uptake. This adaptive response involves AMPK activation by the initial ATP drop, which elevates cell surface GLUT4 and glucose uptake. The gain in surface GLUT4 involves different signals and routes of intracellular traffic compared with those engaged by insulin. The hormone increases GLUT4 exocytosis through phosphatidylinositol 3-kinase and Akt, whereas energy stress retards GLUT4 endocytosis through AMPK and calcium inputs. Given that energy stress is a component of muscle contraction, and that contraction activates AMPK and raises cytosolic calcium, we hypothesize that the increase in glucose uptake during contraction may also involve a reduction in GLUT4 endocytosis. [source]


    AMP-activated protein kinase: a core signalling pathway in the heart

    ACTA PHYSIOLOGICA, Issue 1 2009
    A. S. Kim
    Abstract Over the past decade, AMP-activated protein kinase (AMPK) has emerged as an important intracellular signalling pathway in the heart. Activated AMPK stimulates the production of ATP by regulating key steps in both glucose and fatty acid metabolism. It has an inhibitory effect on cardiac protein synthesis. AMPK also interacts with additional intracellular signalling pathways in a coordinated network that modulates essential cellular processes in the heart. Evidence is accumulating that AMPK may protect the heart from ischaemic injury and limit the development of cardiac myocyte hypertrophy to various stimuli. Heart AMPK is activated by hormones, cytokines and oral hypoglycaemic drugs that are used in the treatment of type 2 diabetes. The tumour suppressor LKB1 is the major regulator of AMPK activity, but additional upstream kinases and protein phosphatases also contribute. Mutations in the regulatory ,2 subunit of AMPK lead to an inherited syndrome of hypertrophic cardiomyopathy and ventricular pre-excitation, which appears to be due to intracellular glycogen accumulation. Future research promises to elucidate the molecular mechanisms responsible for AMPK activation, novel downstream AMPK targets, and the therapeutic potential of targeting AMPK for the prevention and treatment of myocardial ischaemia or cardiac hypertrophy. [source]


    AMP-activated protein kinase and cancer

    ACTA PHYSIOLOGICA, Issue 1 2009
    W. Wang
    Abstract AMP-activated protein kinase (AMPK) is a cellular energy sensor that is conserved in eukaryotes. Elevated AMP/ATP ratio activates AMPK, which inhibits energy-consuming processes and activates energy-producing processes to restore the energy homeostasis inside the cell. AMPK activators, metformin and thiazolidinediones, are used for the treatment of type II diabetes. Recently, reports have indicated that AMPK may also be a beneficial target for cancer treatment. Cancer cells have characteristic metabolic changes different from normal cells and, being a key metabolic regulator, AMPK may regulate the switch. AMPK may act to inhibit tumorigenesis through regulation of cell growth, cell proliferation, autophagy, stress responses and cell polarity. [source]


    LKB1 and AMP-activated protein kinase control of mTOR signalling and growth

    ACTA PHYSIOLOGICA, Issue 1 2009
    R. J. Shaw
    Abstract The AMP-activated serine/threonine protein kinase (AMPK) is a sensor of cellular energy status found in all eukaryotes that is activated under conditions of low intracellular ATP following stresses such as nutrient deprivation or hypoxia. In the past 5 years, work from a large number of laboratories has revealed that one of the major downstream signalling pathways regulated by AMPK is the mammalian target-of-rapamycin [mammalian target of rapamycin (mTOR) pathway]. Interestingly, like AMPK, the mTOR serine/threonine kinase plays key roles not only in growth control and cell proliferation but also in metabolism. Recent work has revealed that across eukaryotes mTOR orthologues are found in two biochemically distinct complexes and only one of those complexes (mTORC1 in mammals) is acutely sensitive to rapamycin and regulated by nutrients and AMPK. Many details of the molecular mechanism by which AMPK inhibits mTORC1 signalling have also been decoded in the past 5 years. AMPK directly phosphorylates at least two proteins to induce rapid suppression of mTORC1 activity, the TSC2 tumour suppressor and the critical mTORC1 binding subunit raptor. Here we explore the molecular connections between AMPK and mTOR signalling pathways and examine the physiological processes in which AMPK regulation of mTOR is critical for growth or metabolic control. The functional conservation of AMPK and TOR in all eukaryotes, and the sequence conservation around the AMPK phosphorylation sites in raptor across all eukaryotes examined suggest that this represents a fundamental cell growth module connecting nutrient status to the cell growth machinery. These findings have broad implications for the control of cell growth by nutrients in a number of cellular and organismal contexts. [source]


    AMP-activated protein kinase in the regulation of hepatic energy metabolism: from physiology to therapeutic perspectives

    ACTA PHYSIOLOGICA, Issue 1 2009
    B. Viollet
    Abstract As the liver is central in the maintenance of glucose homeostasis and energy storage, knowledge of the physiology as well as physiopathology of hepatic energy metabolism is a prerequisite to our understanding of whole-body metabolism. Hepatic fuel metabolism changes considerably depending on physiological circumstances (fed vs. fasted state). In consequence, hepatic carbohydrate, lipid and protein synthesis/utilization are tightly regulated according to needs. Fatty liver and hepatic insulin resistance (both frequently associated with the metabolic syndrome) or increased hepatic glucose production (as observed in type 2 diabetes) resulted from alterations in substrates oxidation/storage balance in the liver. Because AMP-activated protein kinase (AMPK) is considered as a cellular energy sensor, it is important to gain understanding of the mechanism by which hepatic AMPK coordinates hepatic energy metabolism. AMPK has been implicated as a key regulator of physiological energy dynamics by limiting anabolic pathways (to prevent further ATP consumption) and by facilitating catabolic pathways (to increase ATP generation). Activation of hepatic AMPK leads to increased fatty acid oxidation and simultaneously inhibition of hepatic lipogenesis, cholesterol synthesis and glucose production. In addition to a short-term effect on specific enzymes, AMPK also modulates the transcription of genes involved in lipogenesis and mitochondrial biogenesis. The identification of AMPK targets in hepatic metabolism should be useful in developing treatments to reverse metabolic abnormalities of type 2 diabetes and the metabolic syndrome. [source]


    AMP-activated protein kinase , a sensor of glycogen as well as AMP and ATP?

    ACTA PHYSIOLOGICA, Issue 1 2009
    A. McBride
    Abstract The classical role of the AMP-activated protein kinase (AMPK) is to act as a sensor of the immediate availability of cellular energy, by monitoring the concentrations of AMP and ATP. However, the , subunits of AMPK contain a glycogen-binding domain, and in this review we develop the hypothesis that this is a regulatory domain that allows AMPK to act as a sensor of the status of cellular reserves of energy in the form of glycogen. We argue that the pool of AMPK that is bound to the glycogen particle is in an active state when glycogen particles are fully synthesized, causing phosphorylation of glycogen synthase at site 2 and providing a feedback inhibition of further extension of the outer chains of glycogen. However, when glycogen becomes depleted, the glycogen-bound pool of AMPK becomes inhibited due to binding to ,1,6-linked branch points exposed by the action of phosphorylase and/or debranching enzyme. This allows dephosphorylation of site 2 on glycogen synthase by the glycogen-bound form of protein phosphatase-1, promoting rapid resynthesis of glycogen and replenishment of glycogen stores. This is an extension of the classical role of AMPK as a ,guardian of cellular energy', in which it ensures that cellular energy reserves are adequate for medium-term requirements. The literature concerning AMPK, glycogen structure and glycogen-binding proteins that led us to this concept is reviewed. [source]


    AMPK-dependent hormonal regulation of whole-body energy metabolism

    ACTA PHYSIOLOGICA, Issue 1 2009
    N. L. Dzamko
    Abstract AMP-dependent protein kinase (AMPK) is an evolutionarily conserved serine/threonine protein kinase central to the regulation of energy balance at both the cellular and whole-body levels. In its classical role as an intracellular metabolic stress-sensing kinase, AMPK switches on fatty acid oxidation and glucose uptake in muscle, while switching off hepatic gluconeogenesis. AMPK also has a broader role in metabolism through the control of appetite. Regulation of AMPK activity at the whole-body level is coordinated by a growing number of hormones and cytokines secreted from adipose tissue, skeletal muscle, pancreas and the gut including leptin, adiponectin, insulin, interluekin-6, resistin, TNF-, and ghrelin. Understanding how these secreted signalling proteins regulate AMPK activity to control fatty acid oxidation, glucose uptake, gluconeogenesis and appetite may yield therapeutic treatments for metabolic disorders such as diabetes, insulin resistance and obesity. [source]


    Insulin resistance and fuel homeostasis: the role of AMP-activated protein kinase

    ACTA PHYSIOLOGICA, Issue 1 2009
    B. D. Hegarty
    Abstract The worldwide prevalence of type 2 diabetes (T2D) and related disorders of the metabolic syndrome (MS) has reached epidemic proportions. Insulin resistance (IR) is a major perturbation that characterizes these disorders. Extra-adipose accumulation of lipid, particularly within the liver and skeletal muscle, is closely linked with the development of IR. The AMP-activated protein kinase (AMPK) pathway plays an important role in the regulation of both lipid and glucose metabolism. Through its effects to increase fatty acid oxidation and inhibit lipogenesis, AMPK activity in the liver and skeletal muscle could be expected to ameliorate lipid accumulation and associated IR in these tissues. In addition, AMPK promotes glucose uptake into skeletal muscle and suppresses glucose output from the liver via insulin-independent mechanisms. These characteristics make AMPK a highly attractive target for the development of strategies to curb the prevalence and costs of T2D. Recent insights into the regulation of AMPK and mechanisms by which it modulates fuel metabolism in liver and skeletal muscle are discussed here. In addition, we consider the arguments for and against the hypothesis that dysfunctional AMPK contributes to IR. Finally we review studies which assess AMPK as an appropriate target for the prevention and treatment of T2D and MS. [source]


    AMP-activated protein kinase control of fat metabolism in skeletal muscle

    ACTA PHYSIOLOGICA, Issue 1 2009
    D. M. Thomson
    Abstract AMP-activated protein kinase (AMPK) has emerged as a key regulator of skeletal muscle fat metabolism. Because abnormalities in skeletal muscle metabolism contribute to a variety of clinical diseases and disorders, understanding AMPK's role in the muscle is important. It was originally shown to stimulate fatty acid (FA) oxidation decades ago, and since then much research has been accomplished describing this role. In this brief review, we summarize much of these data, particularly in relation to changes in FA oxidation that occur during skeletal muscle exercise. Potential roles for AMPK exist in regulating FA transport into the mitochondria via interactions with acetyl-CoA carboxylase, malonyl-CoA decarboxylase, and perhaps FA transporter/CD36 (FAT/CD36). Likewise, AMPK may regulate transport of FAs into the cell through FAT/CD36. AMPK may also regulate capacity for FA oxidation by phosphorylation of transcription factors such as CREB or coactivators such as PGC-1,. [source]


    AMP-activated protein kinase in contraction regulation of skeletal muscle metabolism: necessary and/or sufficient?

    ACTA PHYSIOLOGICA, Issue 1 2009
    T. E. Jensen
    Abstract In skeletal muscle, the contraction-activated heterotrimeric 5,-AMP-activated protein kinase (AMPK) protein is proposed to regulate the balance between anabolic and catabolic processes by increasing substrate uptake and turnover in addition to regulating the transcription of proteins involved in mitochondrial biogenesis and other aspects of promoting an oxidative muscle phenotype. Here, the current knowledge on the expression of AMPK subunits in human quadriceps muscle and evidence from rodent studies suggesting distinct AMPK subunit expression pattern in different muscle types is reviewed. Then, the intensity and time dependence of AMPK activation in human quadriceps and rodent muscle are evaluated. Subsequently, a major part of this review critically examines the evidence supporting a necessary and/or sufficient role of AMPK in a broad spectrum of skeletal muscle contraction-relevant processes. These include glucose uptake, glycogen synthesis, post-exercise insulin sensitivity, fatty acid (FA) uptake, intramuscular triacylglyceride hydrolysis, FA oxidation, suppression of protein synthesis, proteolysis, autophagy and transcriptional regulation of genes relevant to promoting an oxidative phenotype. [source]


    AMPK activators , potential therapeutics for metabolic and other diseases

    ACTA PHYSIOLOGICA, Issue 1 2009
    G. Zhou
    Abstract AMP-activated protein kinase (AMPK)-mediated cellular metabolic responses to tissue-specific and whole-body stimuli play a vital role in the control of energy homeostasis. As a cellular energy-sensing mechanism, AMPK activation stimulates glucose uptake and fat oxidation, while it suppresses lipogenesis and gluconeogenesis. The cumulative effects of AMPK activation lead to beneficial metabolic states in liver, muscle and other peripheral tissues that are critical in the pathogenesis of obesity, type 2 diabetes and related metabolic disorders. Activators of AMPK that target selected tissues hold potential as novel therapeutics for diseases in which altered energy metabolism contributes to aetiology. [source]


    The role of intramuscular lipid in insulin resistance

    ACTA PHYSIOLOGICA, Issue 4 2003
    B. D. Hegarty
    Abstract There is interest in how altered lipid metabolism could contribute to muscle insulin resistance. Many animal and human states of insulin resistance have increased muscle triglyceride content, and there are now plausible mechanistic links between muscle lipid accumulation and insulin resistance, which go beyond the classic glucose,fatty acid cycle. We postulate that muscle cytosolic accumulation of the metabolically active long-chain fatty acyl CoAs (LCACoA) is involved, leading to insulin resistance and impaired insulin signalling or impaired enzyme activity (e.g. glycogen synthase or hexokinase) either directly or via chronic translocation/activation of mediators such as a protein kinase C (particularly PKC , and ,). Ceramides and diacylglycerols (DAGs) have also been implicated in forms of lipid-induced muscle insulin resistance. Dietary lipid-induced muscle insulin resistance in rodents is relatively easily reversed by manipulations that lessen cytosolic lipid accumulation (e.g. diet change, exercise or fasting). PPAR agonists (both , and ,) also lower muscle LCACoA and enhance insulin sensitivity. Activation of AMP-activated protein kinase (AMPK) by AICAR leads to muscle enhancement (especially glycolytic muscle) of insulin sensitivity, but involvement of altered lipid metabolism is less clear cut. In rodents there are similarities in the pattern of muscle lipid accumulation/PKC translocation/altered insulin signalling/insulin resistance inducible by 3,5-h acute free fatty acid elevation, 1,4 days intravenous glucose infusion or several weeks of high-fat feeding. Recent studies extend findings and show relevance to humans. Muscle cytosolic lipids may accumulate either by increased fatty acid flux into muscle, or by reduced fatty acid oxidation. In some circumstances muscle insulin resistance may be an adaptation to optimize use of fatty acids when they are the predominant available energy fuel. The interactions described here are fundamental to optimizing therapy of insulin resistance based on alterations in muscle lipid metabolism. [source]


    AMP-activated protein kinase: role in metabolism and therapeutic implications

    DIABETES OBESITY & METABOLISM, Issue 6 2006
    Greg Schimmack
    AMP-activated protein kinase (AMPK) is an enzyme that works as a fuel gauge which becomes activated in situations of energy consumption. AMPK functions to restore cellular ATP levels by modifying diverse metabolic and cellular pathways. In the skeletal muscle, AMPK is activated during exercise and is involved in contraction-stimulated glucose transport and fatty acid oxidation. In the heart, AMPK activity increases during ischaemia and functions to sustain ATP, cardiac function and myocardial viability. In the liver, AMPK inhibits the production of glucose, cholesterol and triglycerides and stimulates fatty acid oxidation. Recent studies have shown that AMPK is involved in the mechanism of action of metformin and thiazolidinediones, and the adipocytokines leptin and adiponectin. These data, along with evidence that pharmacological activation of AMPK in vivo improves blood glucose homeostasis, cholesterol concentrations and blood pressure in insulin-resistant rodents, make this enzyme an attractive pharmacological target for the treatment of type 2 diabetes, ischaemic heart disease and other metabolic diseases. [source]


    Metformin action on AMP-activated protein kinase: a translational research approach to understanding a potential new therapeutic target

    DIABETIC MEDICINE, Issue 10 2010
    J. G. Boyle
    Diabet. Med. 27, 1097,1106 (2010) Abstract Clinical studies in Type 2 diabetes mellitus have shown that the effects of metformin go beyond improving HbA1c and include reductions in cardiovascular endpoints. Metformin therapy has been widely used in the treatment of Type 2 diabetes for many years, yet the precise mode of action remains uncertain. It has recently been proposed that metformin-mediated stimulation of hepatic AMP-activated protein kinase (AMPK) underlies the hypoglycaemic effects of metformin. AMPK is a heterotrimeric enzyme that is expressed in many tissues and plays a central role in the regulation of energy homoeostasis. Furthermore, there is increasing evidence that AMPK is implicated in the pathophysiology of cardiovascular and metabolic diseases. The generation of more specific and potent activators of AMPK, however, could have additional metabolic and vascular benefits for patients with Type 2 diabetes. [source]


    Acute signalling responses to intense endurance training commenced with low or normal muscle glycogen

    EXPERIMENTAL PHYSIOLOGY, Issue 2 2010
    Wee Kian Yeo
    We have previously demonstrated that well-trained subjects who completed a 3 week training programme in which selected high-intensity interval training (HIT) sessions were commenced with low muscle glycogen content increased the maximal activities of several oxidative enzymes that promote endurance adaptations to a greater extent than subjects who began all training sessions with normal glycogen levels. The aim of the present study was to investigate acute skeletal muscle signalling responses to a single bout of HIT commenced with low or normal muscle glycogen stores in an attempt to elucidate potential mechanism(s) that might underlie our previous observations. Six endurance-trained cyclists/triathletes performed a 100 min ride at ,70% peak O2 uptake (AT) on day 1 and HIT (8 × 5 min work bouts at maximal self-selected effort with 1 min rest) 24 h later (HIGH). Another six subjects, matched for fitness and training history, performed AT on day 1 then 1,2 h later, HIT (LOW). Muscle biopsies were taken before and after HIT. Muscle glycogen concentration was higher in HIGH versus LOW before the HIT (390 ± 28 versus 256 ± 67 ,mol (g dry wt),1). After HIT, glycogen levels were reduced in both groups (P < 0.05) but HIGH was elevated compared with LOW (229 ± 29 versus 124 ± 41 ,mol (g dry wt),1; P < 0.05). Phosphorylation of 5,AMP-activated protein kinase (AMPK) increased after HIT, but the magnitude of increase was greater in LOW (P < 0.05). Despite the augmented AMPK response in LOW after HIT, selected downstream AMPK substrates were similar between groups. Phosphorylation of p38 mitogen-activated protein kinase (p38 MAPK) was unchanged for both groups before and after the HIT training sessions. We conclude that despite a greater activation AMPK phosphorylation when HIT was commenced with low compared with normal muscle glycogen availability, the localization and phosphorylation state of selected downstream targets of AMPK were similar in response to the two interventions. [source]


    Leptin receptor 170 kDa (OB-R170) protein expression is reduced in obese human skeletal muscle: a potential mechanism of leptin resistance

    EXPERIMENTAL PHYSIOLOGY, Issue 1 2010
    T. Fuentes
    To examine whether obesity-associated leptin resistance could be due to down-regulation of leptin receptors (OB-Rs) and/or up-regulation of suppressor of cytokine signalling 3 (SOCS3) and protein tyrosine phosphatase 1B (PTP1B) in skeletal muscle, which blunt janus kinase 2-dependent leptin signalling and signal transducer and activator of transcription 3 (STAT3) phosphorylation and reduce AMP-activated protein kinase (AMPK) and acetyl-coenzyme A carboxylase (ACC) phosphorylation. Deltoid and vastus lateralis muscle biopsies were obtained from 20 men: 10 non-obese control subjects (mean ±s.d. age, 31 ± 5 years; height, 184 ± 9 cm; weight, 91 ± 13 kg; and percentage body fat, 24.8 ± 5.8%) and 10 obese (age, 30 ± 7 years; height, 184 ± 8 cm; weight, 115 ± 8 kg; and percentage body fat, 34.9 ± 5.1%). Skeletal muscle OB-R170 (OB-R long isoform) protein expression was 28 and 25% lower (both P < 0.05) in arm and leg muscles, respectively, of obese men compared with control subjects. In normal-weight subjects, SOCS3 protein expression, and STAT3, AMPK, and ACC, phosphorylation, were similar in the deltoid and vastus lateralis muscles. In obese subjects, the deltoid muscle had a greater amount of leptin receptors than the vastus lateralis, whilst SOCS3 protein expression was increased and basal STAT3, AMPK, and ACC, phosphorylation levels were reduced in the vastus lateralis compared with the deltoid muscle (all P < 0.05). In summary, skeletal muscle leptin receptors and leptin signalling are reduced in obesity, particularly in the leg muscles. [source]


    Role of exercise-induced brain-derived neurotrophic factor production in the regulation of energy homeostasis in mammals

    EXPERIMENTAL PHYSIOLOGY, Issue 12 2009
    Bente K. Pedersen
    Brain-derived neurotrophic factor (BDNF) has been shown to regulate neuronal development and plasticity and plays a role in learning and memory. Moreover, it is well established that BDNF plays a role in the hypothalamic pathway that controls body weight and energy homeostasis. Recent evidence identifies BDNF as a player not only in central metabolism, but also in regulating energy metabolism in peripheral organs. Low levels of BDNF are found in patients with neurodegenerative diseases, including Alzheimer's disease and major depression. In addition, BDNF levels are low in obesity and independently so in patients with type 2 diabetes. Brain-derived neurotrophic factor is expressed in non-neurogenic tissues, including skeletal muscle, and exercise increases BDNF levels not only in the brain and in plasma, but in skeletal muscle as well. Brain-derived neurotrophic factor mRNA and protein expression was increased in muscle cells that were electrically stimulated, and BDNF increased phosphorylation of AMP-activated protein kinase (AMPK) and acetyl coenzyme A carboxylase-beta (ACC,) and enhanced fatty oxidation both in vitro and ex vivo. These data identify BDNF as a contraction-inducible protein in skeletal muscle that is capable of enhancing lipid oxidation in skeletal muscle via activation of AMPK. Thus, BDNF appears to play a role both in neurobiology and in central as well as peripheral metabolism. The finding of low BDNF levels both in neurodegenerative diseases and in type 2 diabetes may explain the clustering of these diseases. Brain-derived neurotrophic factor is likely to mediate some of the beneficial effects of exercise with regard to protection against dementia and type 2 diabetes. [source]


    Malonyl-CoA decarboxylase (MCD) is differentially regulated in subcellular compartments by 5,AMP-activated protein kinase (AMPK)

    FEBS JOURNAL, Issue 13 2004
    AMPK by adenoviral gene transfer technique, Studies using H9c2 cells overexpressing MCD
    Malonyl-CoA, a potent inhibitor of carnitine pamitoyl transferase-I (CPT-I), plays a pivotal role in fuel selection in cardiac muscle. Malonyl-CoA decarboxylase (MCD) catalyzes the degradation of malonyl-CoA, removes a potent allosteric inhibition on CPT-I and thereby increases fatty acid oxidation in the heart. Although MCD has several Ser/Thr phosphorylation sites, whether it is regulated by AMP-activated protein kinase (AMPK) has been controversial. We therefore overexpressed MCD (Ad.MCD) and constitutively active AMPK (Ad.CA-AMPK) in H9c2 cells, using an adenoviral gene delivery approach in order to examine if MCD is regulated by AMPK. Cells infected with Ad.CA-AMPK demonstrated a fourfold increase in AMPK activity as compared with control cells expressing green fluorescent protein (Ad.GFP). MCD activity increased 40- to 50-fold in Ad.MCD + Ad.GFP cells when compared with Ad.GFP control. Co-expressing AMPK with MCD further augmented MCD expression and activity in Ad.MCD + Ad.CA-AMPK cells compared with the Ad.MCD + Ad.GFP control. Subcellular fractionation further revealed that 54.7 kDa isoform of MCD expression was significantly higher in cytosolic fractions of Ad.MCD + Ad.CA-AMPK cells than of the Ad.MCD +Ad.GFP control. However, the MCD activities in cytosolic fractions were not different between the two groups. Interestingly, in the mitochondrial fractions, MCD activity significantly increased in Ad.MCD + Ad.CA-AMPK cells when compared with Ad.MCD + Ad.GFP cells. Using phosphoserine and phosphothreonine antibodies, no phosphorylation of MCD by AMPK was observed. The increase in MCD activity in mitochondria-rich fractions of Ad.MCD + Ad.CA-AMPK cells was accompanied by an increase in the level of the 50.7 kDa isoform of MCD protein in the mitochondria. This differential regulation of MCD expression and activity in the mitochondria by AMPK may potentially regulate malonyl-CoA levels at sites nearby CPT-I on the mitochondria. [source]


    Control of p70 ribosomal protein S6 kinase and acetyl-CoA carboxylase by AMP-activated protein kinase and protein phosphatases in isolated hepatocytes

    FEBS JOURNAL, Issue 15 2002
    Ulrike Krause
    Certain amino acids, like glutamine and leucine, induce an anabolic response in liver. They activate p70 ribosomal protein S6 kinase (p70S6K) and acetyl-CoA carboxylase (ACC) involved in protein and fatty acids synthesis, respectively. In contrast, the AMP-activated protein kinase (AMPK), which senses the energy state of the cell and becomes activated under metabolic stress, inactivates by phosphorylation key enzymes in biosynthetic pathways thereby conserving ATP. In this paper, we studied the effect of AMPK activation and of protein phosphatase inhibitors, on the amino-acid-induced activation of p70S6K and ACC in hepatocytes in suspension. AMPK was activated under anoxic conditions or by incubation with 5-aminoimidazole-4-carboxyamide ribonucleoside (AICAr) or oligomycin, an inhibitor of mitochondrial oxidative phosphorylation. Incubation of hepatocytes with amino acids activated p70S6K via multiple phosphorylation. It also activated ACC by a phosphatase-dependent mechanism but did not modify AMPK activation. Conversely, the amino-acid-induced activation of both ACC and p70S6K was blocked or reversed when AMPK was activated. This AMPK activation increased Ser79 phosphorylation in ACC but decreased Thr389 phosphorylation in p70S6K. Protein phosphatase inhibitors prevented p70S6K activation when added prior to the incubation with amino acids, whereas they enhanced p70S6K activation when added after the preincubation with amino acids. It is concluded that (a) AMPK blocks amino-acid-induced activation of ACC and p70S6K, directly by phosphorylating Ser79 in ACC, and indirectly by inhibiting p70S6K phosphorylation, and (b) both activation and inhibition of protein phosphatases are involved in the activation of p70S6K by amino acids. p70S6K adds to an increasing list of targets of AMPK in agreement with the inhibition of energy-consuming biosynthetic pathways. [source]


    Schizosaccharomyces pombe cell division cycle under limited glucose requires Ssp1 kinase, the putative CaMKK, and Sds23, a PP2A-related phosphatase inhibitor

    GENES TO CELLS, Issue 5 2009
    Yuichiro Hanyu
    Calcium/calmodulin-dependent protein kinase (CaMK) is required for diverse cellular functions, and similar kinases exist in fungi. Although mammalian CaMK kinase (CaMKK) activates CaMK and also evolutionarily-conserved AMP-activated protein kinase (AMPK), CaMKK is yet to be established in yeast. We here report that the fission yeast Schizosaccharomyces pombe Ssp1 kinase, which controls G2/M transition and response to stress, is the putative CaMKK. Ssp1 has a CaM binding domain (CBD) and associates with 14-3-3 proteins as mammalian CaMKK does. Temperature-sensitive ssp1 mutants isolated are defective in the tolerance to limited glucose, and this tolerance requires the conserved stretch present between the kinase domain and CBD. Sds23, multi-copy suppressor for mutants defective in type 1 phosphatase and APC/cyclosome, also suppresses the ssp1 phenotype, and is required for the tolerance to limited glucose. We demonstrate that Sds23 binds to type 2A protein phosphatases (PP2A) and PP2A-related phosphatase Ppe1, and that Sds23 inhibits Ppe1 phosphatase activity. Ssp1 and Ppe1 thus seem to antagonize in utilizing limited glucose. We also show that Ppk9 and Ssp2 are the catalytic subunits of AMPK and AMPK-related kinases, respectively, which bind to common ,-(Amk2) and ,-(Cbs2) subunits. [source]


    Fenofibrate differentially regulates plasminogen activator inhibitor-1 gene expression via adenosine monophosphate,activated protein kinase,dependent induction of orphan nuclear receptor small heterodimer partner,

    HEPATOLOGY, Issue 3 2009
    Dipanjan Chanda
    Plasminogen activator inhibitor type I (PAI-1) is a marker of the fibrinolytic system and serves as a possible predictor for hepatic metabolic syndromes. Fenofibrate, a peroxisome proliferator-activated receptor , (PPAR,) agonist, is a drug used for treatment of hyperlipidemia. Orphan nuclear receptor small heterodimer partner (SHP) plays a key role in transcriptional repression of crucial genes involved in various metabolic pathways. In this study, we show that fenofibrate increased SHP gene expression in cultured liver cells and in the normal and diabetic mouse liver by activating the adenosine monophosphate,activated protein kinase (AMPK) signaling pathway in a PPAR,-independent manner. Administration of transforming growth factor beta (TGF-,) or a methionine-deficient and choline-deficient (MCD) diet to induce the progressive fibrosing steatohepatitis model in C57BL/6 mice was significantly reversed by fenofibrate via AMPK-mediated induction of SHP gene expression with a dramatic decrease in PAI-1 messenger RNA (mRNA) and protein expression along with other fibrotic marker genes. No reversal was observed in SHP null mice treated with fenofibrate. Treatment with another PPAR, agonist, WY14643, showed contrasting effects on these marker gene expressions in wild-type and SHP null mice, demonstrating the specificity of fenofibrate in activating AMPK signaling. Fenofibrate exhibited a differential inhibitory pattern on PAI-1 gene expression depending on the transcription factors inhibited by SHP. Conclusion: By demonstrating that a PPAR,-independent fenofibrate-AMPK-SHP regulatory cascade can play a key role in PAI-1 gene down-regulation and reversal of fibrosis, our study suggests that various AMPK activators regulating SHP might provide a novel pharmacologic option in ameliorating hepatic metabolic syndromes. (HEPATOLOGY 2009.) [source]


    Hydrogen peroxide induces expression and activation of AMP-activated protein kinase in a dental pulp cell line

    INTERNATIONAL ENDODONTIC JOURNAL, Issue 3 2008
    Y. Fukuyama
    Abstract Aim, To investigate the effects of hydrogen peroxide on cell viability and expression and activation of AMP-activated protein kinase (AMPK) in rat dental pulp cell line RPC-C2A. Methodology, RPC-C2A cells derived from rat dental pulp were maintained in MEM supplemented with 10% FBS at 37 °C, in a humidified atmosphere at 5% CO2. Cells were cultured in the presence or absence of H2O2 for up to 60 min at concentrations of from 0.1 to 3.0 mmol L,1. Cell viability was analysed by WST-1 reduction assay. Expression of AMPK subunit isoforms was analysed by Western blotting using antibodies to the catalytic ,1 and regulatory ,1 and ,1 subunit isoforms. The effect of silencing AMPK,1 on cell viability was determined using siRNA. Results, Exposure to H2O2 decreased cell viability in a time- and dose-dependent manner. The catalytic AMPK,1 subunit and its activated form, phospho-AMPK,, increased with exposure to H2O2 in a time- and dose-dependent manner, whereas the regulatory ,1 and ,1 subunits showed no change. Downregulation of AMPK,1 resulted in a reduction in cell viability in H2O2 -treated cells at a concentration of 0.1 mmol L,1 for 30 min incubation, indicating an increased sensitivity to H2O2. Conclusions, Reactive oxygen induced energy fuel gauge enzyme AMPK, expression and its activation by phosphorylation in RPC-C2A cells, suggesting that AMPK is essential for protection against H2O2 -induced nonapoptotic cell death. Therefore, AMPK may be a therapeutic modulation target for treatment of the dentine,pulp complex injured by reactive oxygen. [source]


    Genistein selectively potentiates arsenic trioxide-induced apoptosis in human leukemia cells via reactive oxygen species generation and activation of reactive oxygen species-inducible protein kinases (p38-MAPK, AMPK)

    INTERNATIONAL JOURNAL OF CANCER, Issue 5 2008
    Yolanda Sánchez
    Abstract The observation that genistein may behave as a pro-oxidant agent lead us to examine the capacity of this isoflavone to modulate the toxicity of the oxidation-sensitive anti-leukemic agent arsenic trioxide (ATO), and for comparison other anti-tumor drugs. Co-treatment with genistein increased ATO-provoked apoptosis and activated apoptosis regulatory events (Bcl-XL down-regulation, cytochrome c and Omi/HtrA2 release from mitochondria, XIAP decrease and caspase-8/Bid and caspase-3 activation) in U937 promonocytes and other human leukemia cell lines (HL60, THP-1, Jurkat, RPMI-8866), but not in phytohemagglutinin-stimulated non-tumor peripheral blood lymphocytes (PBLs). Genistein, alone and with ATO, stimulated reactive oxygen species generation, and apoptosis was attenuated by N -acetyl- L -cysteine and butylated hydroxyanisole. Addition of low H2O2 concentrations mimicked the capacity of genistein to increase ATO-provoked apoptosis in leukemia cells, but not in PBLs. By contrast, co-treatment with genistein or H2O2 failed to potentiate the toxicity of DNA-targeting agent cisplatin, the proteasome inhibitor MG-132 and the histone deacetylase inhibitor MS-275. Within the here used time-period (14 hr) genistein, alone or with ATO, did not significantly affect Akt phosphorylation and NF-,B binding activity, nor decreased intracellular GSH content. However, it elicited N -acetyl- L -cysteine-inhibitable phosphorylation of p38-MAPK and AMPK, and apoptosis was attenuated by pharmacologic inhibitors against these kinases. The pro-oxidant capacity of genistein might be exploited to improve the efficacy of ATO as anti-leukemic agent, and perhaps the efficacy of other oxidation-based therapeutic approaches. © 2008 Wiley-Liss, Inc. [source]


    Skeletal muscle glucose uptake during exercise: A focus on reactive oxygen species and nitric oxide signaling

    IUBMB LIFE, Issue 5 2009
    Troy L. Merry
    Abstract Like insulin, muscle contraction (in vitro or in situ) and exercise increase glucose uptake into skeletal muscle. However, the contraction/exercise pathway of glucose uptake in skeletal muscle is an independent pathway to that of insulin. Indeed, skeletal muscle glucose uptake is normal during exercise in those who suffer from insulin resistance and diabetes. Thus, the pathway of contraction-mediated glucose uptake into skeletal muscle provides an attractive potential target for pharmaceutical treatment and prevention of such conditions, especially as skeletal muscle is the major site of impaired glucose disposal in insulin resistance. The mechanisms regulating skeletal muscle glucose uptake during contraction have not been fully elucidated. Potential regulators include Ca2+ (via CaMK's and/or CaMKK), AMPK, ROS, and NO signaling, with some redundancy likely to be evident within the system. In this review, we attempt to briefly synthesize current evidence regarding the potential mechanisms involved in regulating skeletal muscle glucose uptake during contraction, focusing on ROS and NO signaling. While reading this review, it will become clear that this is an evolving field of research and that much more work is required to elucidate the mechanism(s) regulating skeletal muscle glucose uptake during contraction. © 2009 IUBMB IUBMB Life 61(5): 479,484, 2009 [source]


    The role of PAS kinase in regulating energy metabolism

    IUBMB LIFE, Issue 4 2008
    Huai-Xiang Hao
    Abstract Metabolic disorders, such as diabetes and obesity, are fundamentally caused by cellular energy imbalance and dysregulation. Therefore, understanding the regulation of cellular fuel and energy metabolism is of great importance to develop effective therapies for metabolic disease. The cellular nutrient and energy sensors, AMPK and TOR, play a key role in maintaining cellular energy homeostasis. Like AMPK and TOR, PAS kinase (PASK) is also a nutrient responsive protein kinase. In yeast, PAS kinase phosphorylates the enzyme Ugp1 and thereby shifts glucose partitioning toward cell wall glucan synthesis at the expense of glycogen synthesis. Consistent with this function, yeast PAS kinase is activated by both cell integrity stress and growth in non-fermentative carbon sources. PASK is also important for proper regulation of glucose metabolism in mammals at both the hormonal and cellular level. In cultured pancreatic ,-cells, PASK is activated by elevated glucose concentrations and is required for glucose-stimulated transcription of the insulin gene. PASK knockdown in cultured myoblasts causes increased glucose oxidation and elevated cellular ATP levels. Mice lacking PASK exhibit increased metabolic rate and resistance to diet-induced obesity. Interestingly, PGC-1 expression and AMPK and TOR activity were not affected in PASK deficient mice, suggesting PASK may exert its metabolic effects through a new mechanism. We propose that PASK plays a significant role in nutrient sensing, metabolic regulation, and energy homeostasis, and is a potential therapeutic target for metabolic disease. © 2008 IUBMB IUBMB Life, 60(4): 204,209, 2008 [source]


    AMP-activated protein kinase enhances the expression of muscle-specific ubiquitin ligases despite its activation of IGF-1/Akt signaling in C2C12 myotubes

    JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 2 2009
    Jun F. Tong
    Abstract Two muscle-specific ubiquitin ligases (UL), muscle atrophy F box (MAFbx) and muscle RING finger 1 (MuRF1), are crucial for myofibrillar protein breakdown. The insulin like growth factor-1 (IGF-1) pathway inhibits muscle UL expression through Akt-mediated inhibition of FoxO transcription factors, while AMP-activated protein kinase (AMPK) promotes UL expression. The underlying cellular mechanism, however, remains obscure. In this study, the effect of AMPK and its interaction with IGF-1 on ubiquitin ligases expression was investigated. C2C12 myotubes were treated with 0, 0.1, 0.3, and 1.0,mM 5-aminoimidazole-4-carboxamide-1-,- D -ribofuranoside (AICAR) in the presence or absence of 50,ng/ml IGF-1. IGF-1 activated Akt, which enhanced phosphorlytion of FoxO3a at Thr 318/321 and reduced the expression of UL. Intriguingly, though activation of AMPK by 0.3 and 1.0,mM AICAR synergized IGF-1-induced Akt activation, the expression of UL was not attenuated, but strengthened by AMPK activation. AICAR treatment decreased FoxO3a phosphorylation at 318/321 in the cytoplasm and induced FoxO3 nuclear relocation. mTOR inhibition increased basal MAFbx expression and reversed the inhibitory effect of IGF-1 on UL expression. In conclusion, our data show that AMPK activation by AICAR stimulates UL expression despite the activation of Akt signaling, which may be due to the possible antagonistic effect of FoxO phosphorylation by AMPK on phosphorylation by Akt. In addition, AMPK inhibition of mTOR may provide an additional explanation for the enhancement of UL expression by AMPK. J. Cell. Biochem. 108: 458,468, 2009. © 2009 Wiley-Liss, Inc. [source]


    AMP-activated protein kinase deficiency exacerbates aging-induced myocardial contractile dysfunction

    AGING CELL, Issue 4 2010
    Subat Turdi
    Summary Aging is associated with myocardial dysfunction although the underlying mechanism is unclear. AMPK, a key cellular fuel sensor for energy metabolism, is compromised with aging. This study examined the role of AMPK deficiency in aging-associated myocardial dysfunction. Young or old wild-type (WT) and transgenic mice with overexpression of a mutant AMPK ,2 subunit (kinase dead, KD) were used. AMPK , isoform activity, myocardial function and morphology were examined. DCF and JC-1 fluorescence probes were employed to quantify reactive oxygen species (ROS) and mitochondrial membrane potential (,,m), respectively. KD mice displayed significantly reduced ,2 but not ,1 AMPK isoform activity at both ages with a greater effect at old age. Aging itself decreased ,1 isoform activity. Cardiomyocyte contractile function, intracellular Ca2+ handling, and SERCA2a levels were compromised with aging, the effects of which were exacerbated by AMPK deficiency. H&E staining revealed cardiomyocyte hypertrophy with aging, which was more pronounced in KD mice. TEM micrographs displayed severe disruption of mitochondrial ultrastructure characterized by swollen, irregular shape and disrupted cristae in aged KD compared with WT mice. Aging enhanced ROS production and reduced ,,m, the effects of which were accentuated by AMPK deficiency. Immunoblotting data depicted unchanged Akt phosphorylation and a significant decrease in mitochondrial biogenesis cofactor PGC-1, in aged groups. AMPK deficiency but not aging decreased the phosphorylation of ACC and eNOS. Expression of membrane Glut4 and HSP90 was decreased in aged KD mice. Moreover, treatment of the AMPK activator metformin attenuated aging-induced cardiomyocyte contractile defects. Collectively, our data suggest a role for AMPK deficiency in aging-induced cardiac dysfunction possibly through disrupted mitochondrial function and ROS production. [source]