Aminobutyric Acid (aminobutyric + acid)

Distribution by Scientific Domains
Distribution within Life Sciences

Terms modified by Aminobutyric Acid

  • aminobutyric acid type

  • Selected Abstracts


    Induced Resistance by , -Aminobutyric Acid in Artichoke against White Mould Caused by Sclerotinia sclerotiorum

    JOURNAL OF PHYTOPATHOLOGY, Issue 10 2010
    Emanuela Marcucci
    Abstract ,-aminobutyric acid (BABA) was assessed for the ability to protect two artichoke cultivars, C3 and Exploter, against white mould caused by Sclerotinia sclerotiorum, which represents a major problem in the cultivation of this crop in many growing areas of Central Italy. Changes in the activity and isoenzymatic profiles of the pathogenesis-related (PR) proteins ,-1,3-glucanase, chitinase and peroxidase in plantlets upon BABA treatment and following inoculation of the pathogen in plantlets and leaves detached from adult plants were also investigated as molecular markers of induced resistance and priming. BABA treatments by soil drenching induced a high level of resistance against S. sclerotiorum in artichoke plantlets of both cultivars C3 and Exploter with a similar level of protection and determined a consistent increase in peroxidase activity paralleled with the differential induction of alkaline isoenzyme with a pI 8.6. A consistent change was found in Exploter in the peroxidase activity following BABA treatments and pathogen inoculation and was paralleled with the expression of an anionic band in plantlets and both anionic and cationic bands in leaves. Our results showed a correlation between BABA-induced resistance (BABA-IR) and a augmented capacity to express basal defence responses, more pronounced in cultivar C3 and associated ,-1,3-glucanase accumulation in both plantlets and leaves inoculated with the pathogen, whereas chitinase resulted affected only at plantlet stage. The present results represent the first one showing the effect of BABA in inducing resistance in artichoke and associated accumulation of selected PRs. If confirmed in field tests, the use of BABA at early plant stages may represent a promising approach to the control soilborne pathogens, such as the early infection of S. sclerotiorum. [source]


    In vivo simultaneous monitoring of ,-aminobutyric acid, glutamate, and L -aspartate using brain microdialysis and capillary electrophoresis with laser-induced fluorescence detection: Analytical developments and in vitro/in vivo validations

    ELECTROPHORESIS, Issue 18 2003
    Valérie Sauvinet
    Abstract ,-Aminobutyric acid (GABA), glutamate (Glu), and L -aspartate (L -Asp) are three major amino acid neurotransmitters in the central nervous system. In this work, a method for the separation of these three neurotransmitters in brain microdialysis samples using a commercially available capillary electrophoresis (CE) system has been developed. Molecules were tagged on their primary amine function with the fluorogene agent naphthalene-2,3-dicarboxaldehyde (NDA), and, after separation by micellar electrokinetic chromatography, were detected by laser-induced fluorescence using a 442 nm helium-cadmium laser. The separation conditions for the analysis of derivatized neurotransmitters in standard solutions and microdialysates have been optimized, and this method has been validated on both pharmacological and analytical basis. The separation of GABA, Glu, and L -Asp takes less than 10 min by using a 75 mmol/L borate buffer, pH 9.2, containing 70 mmol/L SDS and 10 mmol/L hydroxypropyl-,-cyclodextrin and +,25 kV voltage. The detection limits were 3, 15 nmol/L and, 5 nmol/L for GABA, Glu, and L -Asp, respectively. Moreover, submicroliter samples can be analyzed. This method allows a simple, rapid and accurate measurement of the three amino acid neurotransmitters for the in vivo brain monitoring using microdialysis sampling. [source]


    Cardiovascular Regulation through Hypothalamic GABAA Receptors in a Genetic Absence Epilepsy Model in Rat

    EPILEPSIA, Issue 2 2002
    Rezzan Gülhan Aker
    Summary: ,Purpose: ,-Aminobutyric acid (GABA) plays a vital role in both central cardiovascular homeostasis and pathogenesis of epilepsy. Epilepsy affects autonomic nervous system functions. In this study, we aimed to clarify the role of GABAA receptors in hypothalamic cardiovascular regulation in a genetically determined animal model of absence epilepsy. Methods: Nonepileptic Wistar rats and genetic absence epilepsy rats from Strasbourg (GAERS) were instrumented with a guide cannula for drug injection and extradural electrodes for EEG recording. After a recovery period, iliac arterial catheters were inserted for direct measurement of mean arterial pressure and heart rate. Bicuculline, a GABAA -receptor antagonist, was injected into the dorsomedial (DMH) or posterior (PH) hypothalamic nuclei of nonepileptic control rats or GAERS. Blood pressure, heart rate, and EEG recordings were performed in conscious unrestrained animals. Results: Bicuculline injections into the hypothalamus produced increases in blood pressure and heart rate of both control rats and GAERS. The DMH group of GAERS showed a twofold increase in the blood pressure and the heart rate compared with those of control rats. Pressor responses to bicuculline, when microinjected into the PH, were similar in the nonepileptic animals and GAERS. Conversely, the amplitude of tachycardic responses to the administration of bicuculline into the PH was significantly higher in GAERS compared with those of control rats. Conclusions: The bicuculline-induced increases in blood pressure and heart rate were more prominent when given in the DMH of GAERS. These results indicate an increased GABAA receptor,mediated cardiovascular response through the DMH in conscious rats with absence epilepsy. [source]


    PRECLINICAL STUDY: Mice lacking Gad2 show altered behavioral effects of ethanol, flurazepam and gabaxadol

    ADDICTION BIOLOGY, Issue 1 2010
    Yuri A. Blednov
    ABSTRACT ,-Aminobutyric acid (GABA) is synthesized in brain by two isoforms of glutamic acid decarboxylase (Gad), Gad1 and Gad2. Gad1 provides most of the GABA in brain, but Gad2 can be rapidly activated in times of high GABA demand. Mice lacking Gad2 are viable whereas deletion of Gad1 is lethal. We produced null mutant mice for Gad2 on three different genetic backgrounds: predominantly C57BL/6J and one or two generations of backcrossing to 129S1/SvimJ (129N1, 129N2). We used these mice to determine if actions of alcohol are regulated by synthesis of GABA from this isoform. We also studied behavioral responses to a benzodiazepine (flurazepam) and a GABAA receptor agonist (gabaxadol). Deletion of Gad2 increased ethanol palatability and intake and slightly reduced the severity of ethanol-induced withdrawal, but these effects depended strongly on genetic background. Mutant mice on the 129N2 background showed the above three ethanol behavioral phenotypes, but the C57BL/6J inbred background did not show any of these phenotypes. Effects on ethanol consumption also depended on the test as the mutation did not alter consumption in limited access models. Deletion of Gad2 reduced the effect of flurazepam on motor incoordination and increased the effect of extrasynaptic GABAA receptor agonist gabaxadol without changing the duration of loss of righting reflex produced by these drugs. These results are consistent with earlier proposals that deletion of Gad2 (on 129N2 background) reduces synaptic GABA but also suggest changes in extrasynaptic receptor function. [source]


    Multiple functions of GABAA and GABAB receptors during pattern processing in the zebrafish olfactory bulb

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 1 2008
    Rico Tabor
    Abstract ,-Aminobutyric acid (GABA)ergic synapses are thought to play pivotal roles in the processing of activity patterns in the olfactory bulb (OB), but their functions have been difficult to study during odor responses in the intact system. We pharmacologically manipulated GABAA and GABAB receptors in the OB of zebrafish and analysed the effects on odor responses of the output neurons, the mitral cells (MCs), by electrophysiological recordings and temporally deconvolved two-photon Ca2+ imaging. The blockade of GABAB receptors enhanced presynaptic Ca2+ influx into afferent axon terminals, and changed the amplitude and time course of a subset of MC responses, indicating that GABAB receptors have a modulatory influence on OB output activity. The blockade of GABAA receptors induced epileptiform firing, enhanced excitatory responses and abolished fast oscillations in the local field potential. Moreover, the topological reorganization and decorrelation of MC activity patterns during the initial phase of the response was perturbed. These results indicate that GABAA receptor-containing circuits participate in the balance of excitation and inhibition, the regulation of total OB output activity, the synchronization of odor-dependent neuronal ensembles, and the reorganization of odor-encoding activity patterns. GABAA and GABAB receptors are therefore differentially involved in multiple functions of neuronal circuits in the OB. [source]


    Demonstration of long-range GABAergic connections distributed throughout the mouse neocortex

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 6 2005
    Ryohei Tomioka
    Abstract ,-Aminobutyric acid (GABA)ergic neurons in the neocortex have been mainly regarded as interneurons and thought to provide local interactions. Recently, however, glutamate decarboxylase (GAD) immunocytochemistry combined with retrograde labeling experiments revealed the existence of GABAergic projection neurons in the neocortex. We further studied the network of GABAergic projection neurons in the neocortex by using GAD67-green fluorescent protein (GFP) knock-in mice for retrograde labeling and a novel neocortical GABAergic neuron labeling method for axon tracing. Many GFP-positive neurons were retrogradely labeled after Fast Blue injection into the primary somatosensory, motor and visual cortices. These neurons were labeled not only around the injection site, but also at a long distance from the injection site. Of the retrogradely labeled GABAergic neurons remote from the injection sites, the vast majority (91%) exhibited somatostatin immunoreactivity, and were preferentially distributed in layer II, layer VI and in the white matter. In addition, most of GABAergic projection neurons were positive for neuropeptide Y (82%) and neuronal nitric oxide synthase (71%). We confirmed the long-range projections by tracing GFP-labeled GABAergic neurons with axon branches traveled rostro-caudally and medio-laterally. Axon branches could be traced up to 2 mm. Some (n = 2 of 4) were shown to cross the areal boundaries. The GABAergic projection neurons preferentially received neocortical inputs. From these results, we conclude that GABAergic projection neurons are distributed throughout the neocortex and are part of a corticocortical network. [source]


    GAT-1 regulates both tonic and phasic GABAA receptor-mediated inhibition in the cerebral cortex

    JOURNAL OF NEUROCHEMISTRY, Issue 5 2008
    Luca Bragina
    Abstract ,-Aminobutyric acid 1 (GAT-1) is the most copiously expressed GABA transporter; we studied its role in phasic and tonic inhibition in the neocortex using GAT-1 knockout (KO) mice. Immunoblotting and immunocytochemical studies showed that GAT-2 and GAT-3 levels in KOs were unchanged and that GAT-3 was not redistributed in KOs. Moreover, the expression of GAD65/67 was increased, whereas that of GABA or VGAT was unchanged. Microdialysis studies showed that in KOs spontaneous extracellular release of GABA and glutamate was comparable in WT and KO mice, whereas KCl-evoked output of GABA, but not of glutamate, was significantly increased in KOs. Recordings from layer II/III pyramids revealed a significant increase in GABAAR-mediated tonic conductance in KO mice. The frequency, amplitude and kinetics of spontaneous inhibitory post-synaptic currents (IPSCs) were unchanged, whereas the decay time of evoked IPSCs was significantly prolonged in KO mice. In KO mice, high frequency stimulation of GABAergic terminals induced large GABAAR-mediated inward currents associated with a reduction in amplitude and decay time of IPSCs evoked immediately after the train. The recovery process was slower in KO than in WT mice. These studies show that in the cerebral cortex of GAT-1 KO mice GAT-3 is not redistributed and GADs are adaptively changed and indicate that GAT-1 has a prominent role in both tonic and phasic GABAAR-mediated inhibition, in particular during sustained neuronal activity. [source]


    GABAA receptor associated proteins: a key factor regulating GABAA receptor function

    JOURNAL OF NEUROCHEMISTRY, Issue 2 2007
    Zi-Wei Chen
    Abstract ,-Aminobutyric acid (GABA), an important inhibitory neurotransmitter in both vertebrates and invertebrates, acts on GABA receptors that are ubiquitously expressed in the CNS. GABAA receptors also represent a major site of action of clinically relevant drugs, such as benzodiazepines, barbiturates, ethanol, and general anesthetics. It has been shown that the intracellular M3-M4 loop of GABAA receptors plays an important role in regulating GABAA receptor function. Therefore, studies of the function of receptor intracellular loop associated proteins become important for understanding mechanisms of regulating receptor activity. Recently, several labs have used the yeast two-hybrid assay to identify proteins interacting with GABAA receptors, for example, the interaction of GABAA receptor associated protein (GABARAP) and Golgi-specific DHHC zinc finger protein (GODZ) with , subunits, PRIP, phospholipase C-related, catalytically inactive proteins (PRIP-1) and (PRIP-2) with GABARAP and receptor ,2 and , subunits, Plic-1 with some , and , subunits, radixin with the ,5 subunit, HAP1 with the ,1 subunit, GABAA receptor interacting factor-1 (GRIF-1) with the ,2 subunit, and brefeldin A-inhibited GDP/GTP exchange factor 2 (BIG2) with the ,3 subunit. These proteins have been shown to play important roles in modulating the activities of GABAA receptors ranging from enhancing trafficking, to stabilizing surface and internalized receptors, to regulating modification of GABAA receptors. This article reviews the current studies of GABAA receptor intracellular loop-associated proteins. [source]


    1-Methyl-4-phenylpridinium (MPP+)-induced functional run-down of GABAA receptor-mediated currents in acutely dissociated dopaminergic neurons

    JOURNAL OF NEUROCHEMISTRY, Issue 1 2002
    Jie Wu
    Abstract We have evaluated GABAA receptor function during treatment of 1-methyl-4-phenylpridinium (MPP+) using patch-clamp perforated whole-cell recording techniques in acutely dissociated dopaminergic (DAergic) neurons from rat substantia nigra compacta (SNc). ,-Aminobutyric acid (GABA), glutamate or glycine induced inward currents (IGABA, IGlu, IGly) at a holding potential (VH) of ,45 mV. The IGABA was reversibly blocked by the GABAA receptor antagonist, bicuculline, suggesting that IGABA is mediated through the activation of GABAA receptors. During extracellular perfusion of MPP+ (1,10 ,m), IGABA, but neither IGlu nor IGly, declined (termed run-down) with repetitive agonist applications, indicating that the MPP+ -induced IGABA run-down occurred earlier than IGly or IGlu under our experimental conditions. The MPP+ -induced IGABA run-down can be prevented by a DA transporter inhibitor, mazindol, and can be mimicked by a metabolic inhibitor, rotenone. Using conventional whole-cell recording with different concentrations of ATP in the pipette solution, IGABA run-down can be induced by decreasing intracellular ATP concentrations, or prevented by supplying intracellular ATP, indicating that IGABA run-down is dependent on intracellular ATP concentrations. A GABAA receptor positive modulator, pentobarbital (PB), potentiated the declined IGABA and eliminated IGABA run-down. Corresponding to these patch-clamp data, tyrosine hydroxylase (TH) immunohistochemical staining showed that TH-positive cell loss was protected by PB during MPP+ perfusion. It is concluded that extracellular perfusion of MPP+ induces a functional run-down of GABAA receptors, which may cause an imbalance of excitation and inhibition of DAergic neurons. [source]


    Constitutive Phosphorylation of the Vesicular Inhibitory Amino Acid Transporter in Rat Central Nervous System

    JOURNAL OF NEUROCHEMISTRY, Issue 4 2000
    Cécile Bedet
    Abstract:,-Aminobutyric acid (GABA) and glycine are stored into synaptic vesicles by a recently identified vesicular inhibitory amino acid transporter [VIAAT, also called vesicular GABA transporter (VGAT)]. Immunoblotting analysis revealed that rat brain VIAAT migrated as a doublet during sodium dodecyl sulfate,polyacrylamide gel electrophoresis, with a predominant slower band in all areas examined except olfactory bulb and retina. The slower band corresponded to a phosphorylated form of VIAAT as it was converted to the faster one by treating brain homogenates with alkaline phosphatase or with an endogenous phosphatase identified as type 2A protein,serine/threonine phosphatase using okadaic acid. In contrast, the recombinant protein expressed in COS-7 or PC12 cells co-migrated with the faster band of the brain doublet and was insensitive to alkaline phosphatase. To investigate the influence of VIAAT phosphorylation on vesicular neurotransmitter loading, purified synaptic vesicles were treated with alkaline phosphatase and assayed for amino acid uptake. However, neither GABA nor glycine uptake was affected by VIAAT phosphorylation. These results indicate that VIAAT is constitutively phosphorylated on cytosolic serine or threonine residues in most, but not all, regions of the rat brain. This phosphorylation does not regulate the vesicular loading of GABA or glycine, suggesting that it is involved at other stages of the synaptic vesicle life cycle. [source]


    ,-Aminobutyric acid-mediated regulation of the activity-dependent olfactory bulb dopaminergic phenotype

    JOURNAL OF NEUROSCIENCE RESEARCH, Issue 10 2009
    Yosuke Akiba
    Abstract ,-Aminobutyric acid (GABA) regulates the proliferation and migration of olfactory bulb (OB) interneuron progenitors derived from the subventricular zone (SVZ), but the role of GABA in the differentiation of these progenitors has been largely unexplored. This study examines the role of GABA in the differentiation of OB dopaminergic interneurons using neonatal forebrain organotypic slice cultures prepared from transgenic mice expressing green fluorescent protein (GFP) under the control of the tyrosine hydroxylase (Th) gene promoter (ThGFP). KCl-mediated depolarization of the slices induced ThGFP expression. The addition of GABA to the depolarized slices further increased GFP fluorescence by inducing ThGFP expression in an additional set of periglomerular cells. These findings show that GABA promoted differentiation of SVZ-derived OB dopaminergic interneurons and suggest that GABA indirectly regulated Th expression and OB dopaminergic neuron differentiation through an acceleration of the maturation rate for the dopaminergic progenitors. Additional studies revealed that the effect of GABA on ThGFP expression required activation of L- and P/Q-type Ca2+ channels as well as GABAA and GABAB receptors. These voltage-gated Ca2+ channels and GABA receptors have previously been shown to be required for the coexpressed GABAergic phenotype in the OB interneurons. Together, these findings suggest that Th expression and the differentiation of OB dopaminergic interneurons are coupled to the coexpressed GABAergic phenotype and demonstrate a novel role for GABA in neurogenesis. © 2009 Wiley-Liss, Inc. [source]


    Hypoalgesia in mice lacking GABA transporter subtype 1

    JOURNAL OF NEUROSCIENCE RESEARCH, Issue 2 2008
    Yin Fang Xu
    Abstract ,-Aminobutyric acid (GABA) transporters play a key role in the regulation of GABA neurotransmission. We reported previously that overexpression of the GABA transporter subtype 1 (GAT1), the major form of the GABA transporter in the CNS, led to hyperalgesia in mice. In the present study, nociceptive responses of GAT1-knockout mice (GAT1,/,) were compared with those of heterozygous (GAT+/,) and wild-type (GAT+/+) mice by four conventional pain models (tail-immersion test, hot-plate test, acetic acid,induced abdominal constriction test, and formalin test). In addition, the analgesic effects of two GAT1-selective inhibitors, NO-711 and tiagabine, were examined in all three genotypes using the same four models. Our data demonstrated that GAT1 deficiency because of genetic knockout or acute blockade by selective inhibitors leads to hypoalgesia in mice. These results confirmed the crucial role of GAT1 in the regulation of nociceptive threshold and suggested that GAT1 inhibitors have the potential for clinical use in pain therapy. © 2007 Wiley-Liss, Inc. [source]


    ,-Aminobutyric acid is present in a spatially discrete subpopulation of hair cells in the crista ampullaris of the toadfish Opsanus tau

    THE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 1 2004
    Gay R. Holstein
    Abstract Although ,-aminobutyric acid (GABA) and glutamate are known to be present in the vestibular sensory epithelia of a variety of species, the functional relationship between these two transmitters is not clear. The present study addresses the three-dimensional spatial distribution of GABA and glutamate immunoreactivity in the vestibular labyrinth of the oyster toadfish by using whole end organs labeled by immunofluorescence with monoclonal anti-GABA and/or antiglutamate antibodies and visualized as whole mounts by multiphoton confocal microscopy. We find glutamate-immunoreactive hair cells present throughout the sensory epithelium. In contrast, prominent GABA immunoreactivity is restricted to a small population of hair cells located in the central region of the crista. Double immunofluorescence reveals two distinct staining patterns in GABA-labeled hair cells. Most (,80%) GABA-labeled cells show trace levels of glutamate, appropriate for the metabolic/synthetic role of cytoplasmic glutamate. The remainder of the GABA-stained cells contain substantial levels of both GABA and glutamate, suggesting transmitter colocalization. In the toadfish utricle, glutamatergic hair cells are present throughout the macula. GABA-immunoreactive hair cells follow the arc of the striola, and most GABA-labeled receptor cells coexpress glutamate. The localization of GABA was explored in other species as well. In the pigeon, GABAergic hair cells are present throughout the crista ampullaris. Our findings demonstrate that multiple, neurochemically distinct types of hair cells are present in vestibular sensory epithelia. These observations, together with the excitatory activity generally associated with 8th nerve afferent fibers, strongly suggest that GABA serves an important, specific, and complex role in determining primary afferent response dynamics. J. Comp. Neurol. 471:1,10, 2004. © 2004 Wiley-Liss, Inc. [source]


    Clinical applications of 1H-MR spectroscopy in the evaluation of epilepsies , What do pathological spectra stand for with regard to current results and what answers do they give to common clinical questions concerning the treatment of epilepsies?

    ACTA NEUROLOGICA SCANDINAVICA, Issue 4 2003
    T. Hammen
    Nuclear magnetic resonance spectroscopy (1H-MRS) is a non-invasive method in detecting abnormal spectra of various brain metabolites containing N -acetylaspartate (NAA), Choline (Cho), Creatine (Cr), , -Aminobutyric acid (GABA) and Glutamate. Technical processing of the MR-systems, improved automated shimming methods and further development of special shim coils increase the magnetic field homogeneity and lead to a better spectral quality and spectral resolution. The handling of the systems becomes more user-friendly and is more likely to be used in routine diagnostics. The 1H-MRS has become a diagnostic tool for assessing a number of diseases of the central nervous system mainly including epilepsies and brain tumours. The role of 1H-MRS in the assessment of epilepsies will probably increase in future. In the following article, the principles of 1H-MRS and an overview of it in the evaluation and treatment of epilepsies with special regard to temporal lobe epilepsies (TLE) has been illustrated. [source]


    Synthesis of N -Acetyl-,-aminobutyric Acid via Amidocarbonylation: A Case Study

    ADVANCED SYNTHESIS & CATALYSIS (PREVIOUSLY: JOURNAL FUER PRAKTISCHE CHEMIE), Issue 4 2003
    Dirk Gördes
    Abstract The synthesis of N -acetyl-,-aminobutyric acid by amidocarbonylation of propionaldehyde with acetamide in the presence of palladium catalysts is studied in detail. The influence of various reaction conditions and compositions (e.g., the co-catalysts acid and bromide) on the yield of N -acetyl-,-aminobutyric acid is shown. For the first time it is demonstrated that the palladium-catalyzed amidocarbonylations of aldehydes can be run with significantly lower halide concentrations (<30 mol,%) without a major yield decrease. While phosphine-free catalyst systems give best yields at low CO pressure, phosphine-ligated palladium catalysts lead to better yields at higher CO pressure. At low palladium loadings (<0.1 mol,%), unwanted condensation reactions of propionaldehyde become increasingly competitive. [source]


    Cell proliferation in the Rana catesbeiana auditory medulla over metamorphic development

    DEVELOPMENTAL NEUROBIOLOGY, Issue 2 2006
    Judith A. Chapman
    Abstract During metamorphic development, bullfrogs (Rana catesbeiana) undergo substantial morphological, anatomical, and physiological changes as the animals prepare for the transition from a fully-aquatic to a semi-terrestrial existence. Using BrdU incorporation and immunohistochemistry, we quantify changes in cell proliferation in two key auditory brainstem nuclei, the dorsolateral nucleus and the superior olivary nucleus, over the course of larval and early postmetamorphic development. From hatchling through early larval stages, numbers of proliferating cells increase in both nuclei, paralleling the overall increase in total numbers of cells available for labeling. Numbers of proliferating cells in the superior olivary nucleus decrease during the late larval and deaf periods, and significantly increase during metamorphic climax. Proliferating cells in the dorsolateral nucleus increase in number from hatchling to late larval stages, decrease during the deaf period, and increase during climax. In both nuclei, numbers of proliferating cells decrease during the postmetamorphic froglet stage, despite increases in the number of cells available for label. Newly generated cells express either glial- or neural-specific phenotypes beginning between 1 week and 1 month post-BrdU injection, respectively, while some new cells express ,-aminobutyric acid within 2 days of mitosis. Our data show that these auditory nuclei dramatically up-regulate mitosis immediately prior to establishment of a transduction system based on atmospheric hearing. © 2005 Wiley Periodicals, Inc. J Neurobiol, 2005 [source]


    Neuronal plasticity: implications in epilepsy progression and management

    DRUG DEVELOPMENT RESEARCH, Issue 8 2007
    Sherifa A. HamedArticle first published online: 12 FEB 200
    Abstract Epilepsy is a common neurological disease. A growing number of research studies provide evidence regarding the progressive neuronal damage induced by prolonged seizures or status epilepticus (SE), as well as recurrent brief seizures. Importantly, seizure is only one aspect of epilepsy. However, cognitive and behavioral deficits induced by progressive seizures or antiepileptic treatment can be detrimental to individual function. The neurobiology of epilepsy is poorly understood involving complex cellular and molecular mechanisms. The brain undergoes changes in its basic structure and function, e.g., neural plasticity with an increased susceptibility in neuronal synchronization and network circuit alterations. Some of these changes are transient, while others are permanent with an involvement of both glutamatergic and ,-aminobutyric acid (GABA)ergic systems. Recent data suggest that impaired neuronal plasticity may underlie the cognitive impairment and behavioral changes associated with epilepsy. Many neurologists recognize that the prevention or suppression of seizures by the use of antiepileptic drugs (AEDs) alone is insufficient without clear predictions of disease outcome. Hence, it is important to understand the molecular mechanisms underlying epileptogenesis because this may allow the development of innovative strategies to prevent or cure this condition. In addition, this realization would have significant impact in reducing the long-term adverse consequences of the disease, including neurocognitive and behavioral adverse effects. Drug Dev Res 68:498,511, 2007. © 2008 Wiley-Liss, Inc. [source]


    In vivo simultaneous monitoring of ,-aminobutyric acid, glutamate, and L -aspartate using brain microdialysis and capillary electrophoresis with laser-induced fluorescence detection: Analytical developments and in vitro/in vivo validations

    ELECTROPHORESIS, Issue 18 2003
    Valérie Sauvinet
    Abstract ,-Aminobutyric acid (GABA), glutamate (Glu), and L -aspartate (L -Asp) are three major amino acid neurotransmitters in the central nervous system. In this work, a method for the separation of these three neurotransmitters in brain microdialysis samples using a commercially available capillary electrophoresis (CE) system has been developed. Molecules were tagged on their primary amine function with the fluorogene agent naphthalene-2,3-dicarboxaldehyde (NDA), and, after separation by micellar electrokinetic chromatography, were detected by laser-induced fluorescence using a 442 nm helium-cadmium laser. The separation conditions for the analysis of derivatized neurotransmitters in standard solutions and microdialysates have been optimized, and this method has been validated on both pharmacological and analytical basis. The separation of GABA, Glu, and L -Asp takes less than 10 min by using a 75 mmol/L borate buffer, pH 9.2, containing 70 mmol/L SDS and 10 mmol/L hydroxypropyl-,-cyclodextrin and +,25 kV voltage. The detection limits were 3, 15 nmol/L and, 5 nmol/L for GABA, Glu, and L -Asp, respectively. Moreover, submicroliter samples can be analyzed. This method allows a simple, rapid and accurate measurement of the three amino acid neurotransmitters for the in vivo brain monitoring using microdialysis sampling. [source]


    Remodeling of extracellular matrix and epileptogenesis

    EPILEPSIA, Issue 2010
    Alexander Dityatev
    Summary Extracellular matrix (ECM) in the brain is composed of molecules synthesized and secreted by neurons and glial cells, which form stable aggregates of diverse composition in the extracellular space. In the mature brain, ECM undergoes a slow turnover and restrains structural plasticity while supporting multiple physiologic processes, including perisomatic ,-aminobutyric acid (GABA)ergic inhibition, synaptic plasticity, and homeostatic regulations. Seizures lead to striking remodeling of ECM, which may be essentially engaged in different aspects of epileptogenesis. This view is supported by human genetic studies linking ECM molecules and epilepsy, by data showing altered epileptogenesis in mice deficient in ECM molecules, and by evidence that ECM may shape seizure-induced sprouting of mossy fibers, granule cell dispersion, and astrogliosis. Therefore, restraining seizure-induced remodeling of ECM or suppressing the signaling triggered by the remodeled ECM might provide effective therapeutic strategies to antagonize the progression of epileptogenesis. [source]


    Antiepileptic drugs combined with high-frequency electrical stimulation in the ventral hippocampus modify pilocarpine-induced status epilepticus in rats

    EPILEPSIA, Issue 3 2010
    Manola Cuellar-Herrera
    Summary Purpose:, To evaluate the effects of high-frequency electrical stimulation (HFS) in both ventral hippocampi, alone and combined with a subeffective dose of antiepileptic drugs, during the status epilepticus (SE) induced by lithium-pilocarpine (LP). Methods:, Male Wistar rats, stereotactically implanted in both ventral hippocampi, were injected with pilocarpine (30 mg/kg, i.p.) 24 h after lithium (3 mEq/kg) administration. One minute following pilocarpine injection, HFS (pulses of 60 ,s width at 130 Hz at subthreshold intensities and applied during 3 h) was applied alone or combined with subeffective doses of antiepileptic drugs. Results:, HFS alone reduced the incidence of severe generalized seizures. This effect was not evident when HFS was combined with phenytoin (33.3 mg/kg, i.p.). HFS combined with diazepam (0.41 mg/kg, i.p.) or phenobarbital (10 mg/kg, i.p.) reduced the incidence of severe generalized seizures and mortality rate, and augmented the latency to first forelimb clonus, generalized seizure, and status epilepticus (SE). When combined with gabapentin (46 mg/kg, i.p.), HFS reduced the incidence of severe generalized seizures, enhanced latency to SE, and decreased mortality rate. Discussion:, Subeffective doses of antiepileptic drugs that increase the ,-aminobutyric acid (GABA)ergic neurotransmission may represent a therapeutic tool to augment the HFS-induced anticonvulsant effects. [source]


    The impact of diazepam's discovery on the treatment and understanding of status epilepticus

    EPILEPSIA, Issue 9 2009
    Howard P. Goodkin
    Summary The fortuitous discovery of the benzodiazepines and the subsequent application of these agents to the treatment of status epilepticus (SE) heralds in the modern age of treating this neurologic emergency. More than 50 years after their discovery, the benzodiazepines remain the drugs of first choice in the treatment of SE. However, the benzodiazepines can be ineffective, especially in those patients whose seizures are the most prolonged. The benzodiazepines act by increasing the affinity of ,-aminobutyric acid (GABA) for GABAA receptors. A receptor's subunit composition affects its functional and pharmacologic properties, trafficking, and cellular localization. The GABAA receptors that mediate synaptic inhibition typically contain a ,2 subunit and are diazepam-sensitive. Among the GABAA receptors that mediate tonic inhibition are the benzodiazepine-insensitive , subunit,containing receptors. The initial studies investigating the pathogenesis of SE demonstrated that a reduction in GABA-mediated inhibition within the hippocampus was important in maintenance of SE, and this reduction correlated with a rapid modification in the postsynaptic GABAA receptor population expressed on the surface of the hippocampal principal neurons. Subsequent studies found that this rapid modification is, in part, mediated by an activity-dependent, subunit-specific trafficking of the receptors that resulted in the reduction in the surface expression of the benzodiazepine-sensitive ,2 subunit,containing receptors and the preserved surface expression of the benzodiazepine-insensitive , subunit-containing receptors. This improved understanding of the changes in the trafficking of GABAA receptors during SE partially accounts for the development of benzodiazepine-pharmacoresistance and has implications for the current and future treatment of benzodiazepine-refractory SE. [source]


    Stress, the hippocampus, and epilepsy

    EPILEPSIA, Issue 4 2009
    Marian Joëls
    Summary Stress is among the most frequently self-reported precipitants of seizures in patients with epilepsy. This review considers how important stress mediators like corticotropin-releasing hormone, corticosteroids, and neurosteroids could contribute to this phenomenon. Cellular effects of stress mediators in the rodent hippocampus are highlighted. Overall, corticosterone,with other stress hormones,rapidly enhances CA1/CA3 hippocampal activity shortly after stress. At the same time, corticosterone starts gene-mediated events, which enhance calcium influx several hours later. This later effect serves to normalize activity but also imposes a risk for neuronal injury if and when neurons are concurrently strongly depolarized, for example, during epileptic activity. In the dentate gyrus, stress-induced elevations in corticosteroid level are less effective in changing membrane properties such as calcium influx; here, enhanced inhibitory tone mediated through neurosteroid effects on ,-aminobutyric acid (GABA) receptors might dominate. Under conditions of repetitive stress (e.g., caused from experiencing repetitive and unpredictable seizures) and/or early life stress, hormonal influences on the inhibitory tone, however, are diminished; instead, enhanced calcium influx and increased excitation become more important. In agreement, perinatal stress and elevated steroid levels accelerate epileptogenesis and lower seizure threshold in various animal models for epilepsy. It will be interesting to examine how curtailing the effects of stress in adults, for example, by brief treatment with antiglucocorticoids, may be beneficial to the treatment of epilepsy. [source]


    Glutamine induces epileptiform discharges in superficial layers of the medial entorhinal cortex from pilocarpine-treated chronic epileptic rats in vitro

    EPILEPSIA, Issue 4 2009
    Nora Sandow
    Summary Purpose:, Glutamine (GLN) is a precursor for synthesis of glutamate and ,-aminobutyric acid (GABA) and has been found in the cerebrospinal fluid (CSF) at mean concentrations of 0.6 mM. Experiments on slices are usually performed in artificial CSF (aCSF) kept free of amino acids. Therefore, the role of glutamine, particularly in tissue of epileptic animals, remains elusive. Methods:, Using extracellular recordings we studied effects of GLN on field potentials and stimulus-evoked field responses in the medial entorhinal cortex (MEC) of combined entorhinal cortex hippocampal slices from pilocarpine-treated chronic epileptic rats and age-matched saline-injected control rats. Results:, In presence of GLN (0.5 and 2 mM) recurrent epileptiform discharges (REDs) were observed in slices from epileptic rats (64% and 80%, respectively), but not in slices from control rats. REDs were restricted to the superficial MEC, suppressed by the ,-Amino-3-hydroxy-5-methyl-4-isoxazol-propionate (AMPA)/kainate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (30 ,M), attenuated by the inhibitor of neuronal glutamine transporters methylamino-isobutyric acid (10 mM), and apparently augmented and prolonged by the GABAA receptor antagonist bicuculline-methiodide (5 ,M). In contrast, amplitudes of stimulus evoked nonsynaptic and synaptic field responses increased in slices from control rats (+23% and +12% of the reference values) and insignificantly less or not in those of epileptic rats (+6.5% and ,0.25%, respectively). Notably, stimulus-evoked slow negative transients confined to slices of epileptic animals were reduced in amplitude (,18%). Discussion:, In combined entorhinal hippocampal slices from chronic epileptic animals, GLN induces glutamatergic REDs via neuronal uptake in superficial layers of the MEC where inhibitory function seemed to be partially preserved. [source]


    Vigabatrin extracellular pharmacokinetics and concurrent ,-aminobutyric acid neurotransmitter effects in rat frontal cortex and hippocampus using microdialysis

    EPILEPSIA, Issue 2 2009
    Xin Tong
    Summary Purpose:, To investigate the pharmacokinetic interrelationship of vigabatrin in blood and the brain (frontal cortex vs. hippocampus) and to ascertain the relationship between brain extracellular vigabatrin concentrations and concurrent ,-aminobutyric acid (GABA) concentrations. Methods:, Sprague-Dawley rats were implanted with a jugular vein catheter for blood sampling, and microdialysis probes in the frontal cortex and hippocampus for extracellular fluid (ECF) sampling. Vigabatrin was administered intraperitoneally at two different doses (500 and 1,000 mg/kg), and blood and ECF were collected at timed intervals up to 8 h. Rats were freely moving and behaving. Vigabatrin (sera and ECF) and GABA (ECF) concentrations were measured with use of high performance liquid chromatography (HPLC). Results:, Vigabatrin concentrations in blood rose linearly and dose-dependently, and vigabatrin rapidly appeared in the brain as evidenced by the detection of vigabatrin in the ECF of both the frontal cortex and hippocampus at time of first sampling (15 min). However, frontal cortex concentrations were twofold greater than those of the hippocampus. Furthermore, GABA concentrations increased five-fold in the frontal cortex but were unaffected in the hippocampus. In addition, GABA concentrations began to increase approximately 3 h after vigabatrin administration at a time when vigabatrin concentrations were in exponential decline. Conclusions:, Vigabatrin distribution in the brain is region specific, with frontal cortex concentrations substantially greater than those seen in the hippocampus. Elevation of GABA concentrations did not reflect the concentration profile of vigabatrin but reflected its regional distribution. [source]


    Pregabalin Exerts Oppositional Effects on Different Inhibitory Circuits in Human Motor Cortex: A Double-blind, Placebo-controlled Transcranial Magnetic Stimulation Study

    EPILEPSIA, Issue 5 2006
    Nicolas Lang
    Summary:,Purpose: To explore acute effects of pregabalin (PGB) on human motor cortex excitability with transcranial magnetic stimulation (TMS). Methods: PGB, 600 mg/day, was orally administered in 19 healthy subjects twice daily in a randomized, double-blind, placebo-controlled crossover design. Several measures of motor cortex excitability were tested with single- and paired-pulse TMS. Results: Mean short-interval intracortical inhibition (SICI) was reduced after PGB (74 ± 7% of unconditioned response) compared with placebo (60 ± 6% of unconditioned response). In contrast, mean long-interval intracortical inhibition (LICI) was increased by PGB (26 ± 4% of unconditioned response) compared with placebo (45 ± 8% of unconditioned response), and mean cortical silent period (CSP) showed an increase from 139 ± 8 ms or 145 ± 8 ms after placebo to 162 ± 7 ms or 161 ± 10 ms after PGB. Motor thresholds, intracortical facilitation, and corticospinal excitability were unaffected. Conclusions: The observed excitability changes with oppositional effects on SICI and LICI or CSP suggest ,-aminobutyric acid (GABA)B -receptor activation. They are markedly distinct from those induced by gabapentin, although both PGB and gabapentin are thought to mediate their function by binding to the ,(2)-, subunit of voltage-gated calcium channels. Conversely, the TMS profile of PGB shows striking similarities with the pattern evoked by the GABA-reuptake inhibitor tiagabine. [source]


    Evidence for a Role of the Parafascicular Nucleus of the Thalamus in the Control of Epileptic Seizures by the Superior Colliculus

    EPILEPSIA, Issue 1 2005
    Karine Nail-Boucherie
    Summary:,Purpose: The aim of this study was to investigate whether the nucleus parafascicularis (Pf) of the thalamus could be a relay of the control of epileptic seizures by the superior colliculus (SC). The Pf is one of the main ascending projections of the SC, the disinhibition of which has been shown to suppress seizures in different animal models and has been proposed as the main relay of the nigral control of epilepsy. Methods: Rats with genetic absence seizures (generalized absence epilepsy rat from Strasbourg or GAERS) were used in this study. The effect of bilateral microinjection of picrotoxin, a ,-aminobutyric acid (GABA) antagonist, in the SC on the glutamate and GABA extracellular concentration within the Pf was first investigated by using microdialysis. In a second experiment, the effect of direct activation of Pf neurons on the occurrence of absence seizures was examined with microinjection of low doses of kainate, a glutamate agonist. Results: Bilateral injection of picrotoxin (33 pmol/side) in the SC suppressed spike-and-wave discharges for 20 min. This treatment resulted in an increase of glutamate but not GABA levels in the Pf during the same time course. Bilateral injection of kainate (35 pmol/side) into the Pf significantly suppressed spike-and-wave discharges for 20 min, whereas such injections were without effects when at least one site was located outside the Pf. Conclusions: These data suggest that glutamatergic projections to the Pf could be involved in the control of seizures by the SC. Disinhibition of these neurons could lead to seizure suppression and may be involved in the nigral control of epilepsy. [source]


    Genetic Architecture of Idiopathic Generalized Epilepsy: Clinical Genetic Analysis of 55 Multiplex Families

    EPILEPSIA, Issue 5 2004
    Carla Marini
    Summary: Purpose: In families with idiopathic generalized epilepsy (IGE), multiple IGE subsyndromes may occur. We performed a genetic study of IGE families to clarify the genetic relation of the IGE subsyndromes and to improve understanding of the mode(s) of inheritance. Methods: Clinical and genealogic data were obtained on probands with IGE and family members with a history of seizures. Families were grouped according to the probands' IGE subsyndrome: childhood absence epilepsy (CAE), juvenile absence epilepsy (JAE), juvenile myoclonic epilepsy (JME), and IGE with tonic,clonic seizures only (IGE-TCS). The subsyndromes in the relatives were analyzed. Mutations in genes encoding ,1 and ,2 ,-aminobutyric acid (GABA)-receptor subunits, ,1 and ,1 sodium channel subunits, and the chloride channel CLC-2 were sought. Results: Fifty-five families were studied. 122 (13%) of 937 first- and second-degree relatives had seizures. Phenotypic concordance within families of CAE and JME probands was 28 and 27%, respectively. JAE and IGE-TCS families had a much lower concordance (10 and 13%), and in the JAE group, 31% of relatives had CAE. JME was rare among affected relatives of CAE and JAE probands and vice versa. Mothers were more frequently affected than fathers. No GABA-receptor or sodium or chloride channel gene mutations were identified. Conclusions: The clinical genetic analysis of this set of families suggests that CAE and JAE share a close genetic relation, whereas JME is a more distinct entity. Febrile seizures and epilepsy with unclassified tonic,clonic seizures were frequent in affected relatives of all IGE individuals, perhaps representing a nonspecific susceptibility to seizures. A maternal effect also was seen. Our findings are consistent with an oligogenic model of inheritance. [source]


    Effects of Antiepileptic Drugs on Refractory Seizures in the Intact Immature Corticohippocampal Formation In Vitro

    EPILEPSIA, Issue 11 2003
    Pascale Paule Quilichini
    Summary:,Purpose: We developed a new in vitro preparation of immature rats, in which intact corticohippocampal formations (CHFs) depleted in magnesium ions become progressively epileptic. The better to characterize this model, we examined the effects of 14 antiepileptic drugs (AEDs) currently used in clinical practice. Methods: Recurrent ictal-like seizures (ILEs, four per hour) were generated in intact CHFs of P7,8 rats, and extracellular recordings were performed in the hippocampus and neocortex. AEDs were applied at clinically relevant concentrations (at least two), during 30 min after the third ILE. Their ability to prevent or to delay the next ILE was examined. Results: Valproic acid and benzodiazepines (clobazam and midazolam) but also phenobarbital and levetiracetam prevent the occurrence of seizures. In contrast, usual concentrations of carbamazepine (CBZ), phenytoin, vigabatrin, tiagabine, gabapentin, lamotrigine (LTG), topiramate, felbamate, and ethosuximide did not suppress ILEs. In addition, LTG and CBZ aggravate seizures in one third of the cases. Conclusions: This intact in vitro preparation in immature animals appears to be quite resistant to most AEDs. Blockade of seizures was achieved with drugs acting mainly at the ,-aminobutyric acid (GABA)A -receptor site but not with those that increase the amount of GABA. Drugs with a broad spectrum of activity are efficient but not those preferentially used in partial seizures or absences. We suggest that this preparation may correspond to a model of epilepsy with generalized convulsive seizures and could be helpful to develop new AEDs for refractory infantile epilepsies. [source]


    Vigabatrin, but not Gabapentin or Topiramate, Produces Concentration-related Effects on Enzymes and Intermediates of the GABA Shunt in Rat Brain and Retina

    EPILEPSIA, Issue 7 2003
    Graeme J. Sills
    Summary: Purpose: The antiepileptic drug (AED) vigabatrin (VGB), which exerts its pharmacologic effects on the ,-aminobutyric acid (GABA) system, causes concentric visual field constriction in >40% of exposed adults. This may be a class effect of all agents with GABA-related mechanisms of action. We compared the concentration-related effects of VGB in rat brain and eye with those of gabapentin (GBP) and topiramate (TPM), both of which have been reported to elevate brain GABA concentrations in humans. Methods: Adult male rats (n = 10) were administered 0.9% saline (control), VGB (250, 500, 1,000 mg/kg), GBP (50, 100, 200 mg/kg), or TPM (12.5, 25, 50, 100 mg/kg). At 2 h after dosing, animals were killed, a blood sample obtained, the brain dissected into eight distinct regions, and the retina and vitreous humor isolated from each eye. Samples were analyzed for several GABA-related neurochemical parameters, and serum and tissue drug concentrations determined. Results: VGB treatment produced a significant (p < 0.05) dose-related increase in GABA concentrations and decrease in GABA-transaminase activity in all tissues investigated. This effect was most pronounced in the retina, where VGB concentrations were 18.5-fold higher than those in brain. In contrast, GBP and TPM were without effect on any of the neurochemical parameters investigated and did not accumulate appreciably in the retina. Conclusions: These findings corroborate a previously reported accumulation of VGB in the retina, which may be responsible for the visual field constriction observed clinically. This phenomenon does not appear to extend to other GABAergic drugs, suggesting that these agents might not cause visual field defects. [source]


    Impaired M-Current and Neuronal Excitability

    EPILEPSIA, Issue 2002
    Motohiro Okada
    Summary: ,Purpose: Benign familial neonatal convulsions (BFNC), a hereditary epilepsy, occurs specifically in newborns and remits spontaneously after this period. Several mutations of either KCNQ2 or KCNQ3, members of the KCNQ-related K+ -channel (KCNQ-channel) family, were identified as a cause of BFNC. Such mutations impair KCNQ-related M- current, an element of the inhibitory system in the central nervous system (CNS), and therefore are thought to result in neuronal hyperexcitability. Methods: To clarify the pathogenesis of BFNC, this study investigated the effects of the KCNQ channel on propagation of neuronal excitability using a 64-channel multielectrode dish (MED64) system for novel two-dimensional monitoring of evoked field potentials including fiber volley (FV) and field excitatory postsynaptic potential (fEPSP). Results: Dup996, a selective KCNQ-channel inhibitor, did not affect the amplitude of FV or fEPSP, but enhanced the FV and fEPSP propagation. The ,-aminobutyric acid (GABA)A -receptor antagonist, bicuculline, enhanced their propagation, whereas ,-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA)/glutamate-receptor antagonist, DNQX, reduced both amplitude and propagation of fEPSP without affecting those of FV. Under the condition of GABAA -receptor blockade by bicuculline, Dup996 enhanced the amplitude of fEPSP and propagation of FV and fEPSP without affecting the amplitude of FV. Dup996 enhanced the stimulating effects of bicuculline on the propagation and amplitude of FV and fEPSP, but it did not affect the inhibiting effects of DNQX. Conclusions: These results suggest that the occurrence of BFNC cannot be produced by KCNQ-channel dysfunction alone but by reciprocal action between impaired KCNQ channel and the other unknown. [source]