Amino-acid Residues (amino-acid + residue)

Distribution by Scientific Domains


Selected Abstracts


Structure of O67745_AQUAE, a hypothetical protein from Aquifex aeolicus

ACTA CRYSTALLOGRAPHICA SECTION F (ELECTRONIC), Issue 5 2007
Vaheh Oganesyan
Using single-wavelength anomalous dispersion data obtained from a gold-derivatized crystal, the X-ray crystal structure of the protein 067745_AQUAE from the prokaryotic organism Aquifex aeolicus has been determined to a resolution of 2.0,Å. Amino-acid residues 1,371 of the 44,kDa protein were identified by Pfam as an HD domain and a member of the metal-dependent phosphohydrolase superfamily (accession No. PF01966). Although three families from this large and diverse group of enzymatic proteins are represented in the PDB, the structure of 067745_AQUAE reveals a unique fold that is unlike the others and that is likely to represent a new subfamily, further organizing the families and characterizing the proteins. Data are presented that provide the first insights into the structural organization of the proteins within this clan and a distal alternative GDP-binding domain outside the metal-binding active site is proposed. [source]


Identification of yeast aspartyl aminopeptidase gene by purifying and characterizing its product from yeast cells

FEBS JOURNAL, Issue 1 2006
Ryo Yokoyama
Aspartyl aminopeptidase (EC 3.4.11.21) cleaves only unblocked N-terminal acidic amino-acid residues. To date, it has been found only in mammals. We report here that aspartyl aminopeptidase activity is present in yeast. Yeast aminopeptidase is encoded by an uncharacterized gene in chromosome VIII (YHR113W, Saccharomyces Genome Database). Yeast aspartyl aminopeptidase preferentially cleaved the unblocked N-terminal acidic amino-acid residue of peptides; the optimum pH for this activity was within the neutral range. The metalloproteases inhibitors EDTA and 1.10-phenanthroline both inhibited the activity of the enzyme, whereas bestatin, an inhibitor of most aminopeptidases, did not affect enzyme activity. Gel filtration chromatography revealed that the molecular mass of the native form of yeast aspartyl aminopeptidase is ,,680 000. SDS/PAGE of purified yeast aspartyl aminopeptidase produced a single 56-kDa band, indicating that this enzyme comprises 12 identical subunits. [source]


The role of the second binding loop of the cysteine protease inhibitor, cystatin A (stefin A), in stabilizing complexes with target proteases is exerted predominantly by Leu73

FEBS JOURNAL, Issue 22 2002
Alona Pavlova
The aim of this work was to elucidate the roles of individual residues within the flexible second binding loop of human cystatin A in the inhibition of cysteine proteases. Four recombinant variants of the inhibitor, each with a single mutation, L73G, P74G, Q76G or N77G, in the most exposed part of this loop were generated by PCR-based site-directed mutagenesis. The binding of these variants to papain, cathepsin L, and cathepsin B was characterized by equilibrium and kinetic methods. Mutation of Leu73 decreased the affinity for papain, cathepsin L and cathepsin B by ,,300-fold, >10-fold and ,,4000-fold, respectively. Mutation of Pro74 decreased the affinity for cathepsin B by ,,10-fold but minimally affected the affinity for the other two enzymes. Mutation of Gln76 and Asn77 did not alter the affinity of cystatin A for any of the proteases studied. The decreased affinities were caused exclusively by increased dissociation rate constants. These results show that the second binding loop of cystatin A plays a major role in stabilizing the complexes with proteases by retarding their dissociation. In contrast with cystatin B, only one amino-acid residue of the loop, Leu73, is of principal importance for this effect, Pro74 assisting to a minor extent only in the case of cathepsin B binding. The contribution of the second binding loop of cystatin A to protease binding varies with the protease, being largest, ,,45% of the total binding energy, for inhibition of cathepsin B. [source]


Coordination chemistry of iron(III),porphyrin,antibody complexes

FEBS JOURNAL, Issue 2 2002
Influence on the peroxidase activity of the axial coordination of an imidazole on the iron atom
An artificial peroxidase-like hemoprotein has been obtained by associating a monoclonal antibody, 13G10, and its iron(III),,,,,,,,- meso -tetrakis(ortho -carboxyphenyl)porphyrin [Fe(ToCPP)] hapten. In this antibody, about two-thirds of the porphyrin moiety is inserted in the binding site, its ortho -COOH substituents being recognized by amino-acids of the protein, and a carboxylic acid side chain of the protein acts as a general acid base catalyst in the heterolytic cleavage of the O,O bond of H2O2, but no amino-acid residue is acting as an axial ligand of the iron. We here show that the iron of 13G10,Fe(ToCPP) is able to bind, like that of free Fe(ToCPP), two small ligands such as CN,, but only one imidazole ligand, in contrast to to the iron(III) of,Fe(ToCPP) that binds two. This phenomenon is general for a series of monosubstituted imidazoles, the 2- and 4-alkyl-substituted imidazoles being the best ligands, in agreement with the hydrophobic character of the antibody binding site. Complexes of antibody 13G10 with less hindered iron(III),tetraarylporphyrins bearing only one [Fe(MoCPP)] or two meso-[ortho -carboxyphenyl] substituents [Fe(DoCPP)] also bind only one imidazole. Finally, peroxidase activity studies show that imidazole inhibits the peroxidase activity of 13G10,Fe(ToCPP) whereas it increases that of 13G10,Fe(DoCPP). This could be interpreted by the binding of the imidazole ligand on the iron atom which probably occurs in the case of 13G10,Fe(ToCPP) on the less hindered face of the porphyrin, close to the catalytic COOH residue, whereas in the case of 13G10,Fe(DoCPP) it can occur on the other face of the porphyrin. The 13G10,Fe(DoCPP),imidazole complex thus constitutes a nice artificial peroxidase-like hemoprotein, with the axial imidazole ligand of the iron mimicking the proximal histidine of peroxidases and a COOH side chain of the antibody acting as a general acid-base catalyst like the distal histidine of peroxidases does. [source]


2-Methylisocitrate lyases from the bacterium Escherichia coli and the filamentous fungus Aspergillus nidulans

FEBS JOURNAL, Issue 12 2001
Characterization, comparison of both enzymes
In Escherichia coli and Aspergillus nidulans, propionate is oxidized to pyruvate via the methylcitrate cycle. The last step of this cycle, the cleavage of 2-methylisocitrate to succinate and pyruvate is catalysed by 2-methylisocitrate lyase. The enzymes from both organisms were assayed with chemically synthesized threo -2-methylisocitrate; the erythro -diastereomer was not active. 2-Methylisocitrate lyase from E. coli corresponds to the PrpB protein of the prp operon involved in propionate oxidation. The purified enzyme has a molecular mass of approximately 32 kDa per subunit, which is lower than those of isocitrate lyases from bacterial sources (, 48 kDa). 2-Methylisocitrate lyase from A. nidulans shows an apparent molecular mass of 66 kDa per subunit, almost equal to that of isocitrate lyase of the same organism. Both 2-methylisocitrate lyases have a native homotetrameric structure as identified by size-exclusion chromatography. The enzymes show no measurable activity with isocitrate. Starting from 250 mm pyruvate, 150 mm succinate and 10 µm PrpB, the enzymatically active stereoisomer could be synthesized in 1% yield. As revealed by chiral HPLC, the product consisted of a single enantiomer. This isomer is cleaved by 2-methylisocitrate lyases from A. nidulans and E. coli. The PrpB protein reacted with stoichiometric amounts of 3-bromopyruvate whereby the activity was lost and one amino-acid residue per subunit became modified, most likely a cysteine as shown for isocitrate lyase of E. coli. PrpB exhibits 34% sequence identity with carboxyphosphoenolpyruvate phosphonomutase from Streptomyces hygroscopicus, in which the essential cysteine residue is conserved. [source]


Insect silk contains both a Kunitz-type and a unique Kazal-type proteinase inhibitor

FEBS JOURNAL, Issue 7 2001
Xavier Nirmala
Insect silk is made up of structural fibrous (fibroins) and sticky (sericins) proteins, and contains a few small peptides of hitherto unknown functions. We demonstrate that two of these peptides inhibit bacterial and fungal proteinases (subtilisin, proteinase K and pronase). These ,silk proteinase inhibitors' 1 and 2 (SPI 1 and 2) are produced in the middle section of the silk-secreting glands prior to cocoon spinning and their production is controlled at transcription level. The full length cDNA of pre-SPI 1 contains 443 nucleotides and encodes a peptide of 76 amino-acid residues, of which 20 make up a signal sequence. The mature SPI 1 (6056.7 Da, 56 residues) is a typical thermostable Kunitz-type proteinase inhibitor with Arg in P1 position. The cDNA of pre-SPI 2 consists of 260 nucleotides and yields a putative secretory peptide of 58 amino-acid residues. The functional SPI 2 (3993 Da, 36 residues) is a single-domain Kazal-type proteinase inhibitor with unique structural features: free segment of the N-terminus is reduced to a single amino-acid residue, lack of CysI and CysV precludes formation of the A-ring and provides increased flexibility to the C-ring, and absence of several residues around the normal position of CysV shortens and changes the , helix segment of the protein. The structure reveals that the length and arrangement of the B-ring, including exposure of the P1 residue, and the position of the C-terminus relative to the B-loop, are essential for the activity of the Kazal-type inhibitors. [source]


Unmasking a hyaluronan-binding site of the BX7B type in the H3 heavy chain of the inter-,-inhibitor family

FEBS JOURNAL, Issue 3 2001
Laetitia Jean
The inter-,-inhibitor (I,I) family gathers together several plasma protease inhibitors such as I,I and pre-,-inhibitor (P,I) that are variously assembled from a set of polypeptide chain precursors designated H1P to H3P. In addition to their protease inhibitory activity, a major physiological function of I,I family members is hyaluronan (HA) binding and HA-dependent stabilization of the extracellular matrix surrounding various cell types. Also, binding of HA to these molecules has been shown to be an important event in tumor cell proliferation and rheumatoid arthritis. However, how HA and I,I family members first recognize each other has so far remained elusive. The so-called BX7B domain found in some HA-binding proteins is an HA-binding site in which B represents a basic amino-acid residue and X represents any nonacidic residue. This domain has now been identified in the N-terminal end of H3P that is a precursor of P,I. A series of wild-type or mutant recombinant H3P chains produced with a mouse cDNA expressed in Escherichia coli allowed us to demonstrate that this domain binds HA in a noncovalent fashion. Furthermore, unmasking this HA-binding activity required most of H3P to be trimmed off at its C-terminal end. The latter observation was confirmed with a natural, mature H3 chain purified from human plasma. Indeed, a thermolysin-generated, N-terminal fragment of this H3 chain strongly bound HA whereas the intact H3 chain did not. Therefore, in vivo, the HA-binding activity of the mature H3 chain within P,I may vary with the folding and/or fragmentation of this protein. [source]


Structure of the nondiscriminating aspartyl-tRNA synthetase from the crenarchaeon Sulfolobus tokodaii strain 7 reveals the recognition mechanism for two different tRNA anticodons

ACTA CRYSTALLOGRAPHICA SECTION D, Issue 10 2007
Yoshiteru Sato
In protein synthesis, 20 types of aminoacyl-tRNA synthetase (aaRS) are generally required in order to distinguish between the 20 types of amino acid so that each achieves strict recognition of the cognate amino acid and the cognate tRNA. In the crenarchaeon Sulfolobus tokodaii strain 7 (St), however, asparaginyl-tRNA synthetase (AsnRS) is missing. It is believed that AspRS instead produces Asp-tRNAAsn in addition to Asp-tRNAAsp. In order to reveal the recognition mechanism for the two anticodons, GUC for aspartate and GUU for asparagine, the crystal structure of St -AspRS (nondiscriminating type) has been determined at 2.3,Å resolution as the first example of the nondiscriminating type of AspRS from crenarchaea. A structural comparison with structures of discriminating AspRSs indicates that the structures are similar to each other overall and that the catalytic domain is highly conserved as expected. In the N-terminal domain, however, the binding site for the third anticodon nucleotide is modified to accept two pyrimidine bases, C and U, but not purine bases. The C base can bind to form a hydrogen bond to the surrounding main-chain amide group in the discriminating AspRS, while in the nondiscriminating AspRS the corresponding amino-acid residue is replaced by proline, which has no amide H atom for hydrogen-bond formation, thus allowing the U base to be accommodated in this site. In addition, the residues that cover the base plane are missing in the nondiscriminating AspRS. These amino-acid changes make it possible for both C and U to be accepted by the nondiscriminating AspRS. It is speculated that this type of nondiscriminating AspRS has been introduced into Thermus thermophilus through horizontal gene transfer. [source]


Structure of the lamin A/C R482W mutant responsible for dominant familial partial lipodystrophy (FPLD)

ACTA CRYSTALLOGRAPHICA SECTION F (ELECTRONIC), Issue 7 2009
Eugenia Magracheva
Proteins of the A-type lamin family, which consists of two members, lamin A and lamin C, are the major components of a thin proteinaceous filamentous meshwork, the lamina, that underlies the inner nuclear membrane. A-type lamins have recently become the focus of extensive functional studies as a consequence of the linking of at least eight congenital diseases to mutations in the lamin A/C gene (LMNA). This spectrum of pathologies, which mostly manifest themselves as dominant traits, includes muscle dystrophies, dilated cardiomyopathies, the premature aging syndrome Hutchinson,Guilford progeria and familial partial lipodystrophy (FPLD). The crystal structure of the lamin A/C mutant R482W, a variant that causes FPLD, has been determined at 1.5,Å resolution. A completely novel aggregation state of the C-terminal globular domain and the position of the mutated amino-acid residue suggest means by which the mutation may affect lamin A/C,protein and protein,DNA interactions. [source]


Cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of human ARH3, the first eukaryotic protein-ADP-ribosylhydrolase

ACTA CRYSTALLOGRAPHICA SECTION F (ELECTRONIC), Issue 3 2006
Stefan Kernstock
ADP-ribosylhydrolases catalyze the release of ADP-ribose from ADP-ribosylated proteins via hydrolysis of the glycosidic bond between ADP-ribose and a specific amino-acid residue in a target protein. Human ADP-ribosylhydrolase 3, consisting of 347 amino-acid residues, has been cloned and heterologously expressed in Escherichia coli, purified and crystallized in two different space groups. Preliminary X-ray diffraction studies yielded excellent diffraction data to a resolution of 1.6,Å. [source]


Identification of yeast aspartyl aminopeptidase gene by purifying and characterizing its product from yeast cells

FEBS JOURNAL, Issue 1 2006
Ryo Yokoyama
Aspartyl aminopeptidase (EC 3.4.11.21) cleaves only unblocked N-terminal acidic amino-acid residues. To date, it has been found only in mammals. We report here that aspartyl aminopeptidase activity is present in yeast. Yeast aminopeptidase is encoded by an uncharacterized gene in chromosome VIII (YHR113W, Saccharomyces Genome Database). Yeast aspartyl aminopeptidase preferentially cleaved the unblocked N-terminal acidic amino-acid residue of peptides; the optimum pH for this activity was within the neutral range. The metalloproteases inhibitors EDTA and 1.10-phenanthroline both inhibited the activity of the enzyme, whereas bestatin, an inhibitor of most aminopeptidases, did not affect enzyme activity. Gel filtration chromatography revealed that the molecular mass of the native form of yeast aspartyl aminopeptidase is ,,680 000. SDS/PAGE of purified yeast aspartyl aminopeptidase produced a single 56-kDa band, indicating that this enzyme comprises 12 identical subunits. [source]


Molecular characterization of artemin and ferritin from Artemia franciscana

FEBS JOURNAL, Issue 1 2003
Tao Chen
Embryos of the brine shrimp, Artemia franciscana, exhibit remarkable resistance to physiological stress, which is temporally correlated with the presence of two proteins, one a small heat shock/,-crystallin protein termed p26 and the other called artemin, of unknown function. Artemin was sequenced previously by Edman degradation, and its relationship to ferritin, an iron storage protein, established. The isolation from an Artemia expressed sequence tag library of artemin and ferritin cDNAs extends this work. Artemin cDNA was found to contain an ORF of 693 nucleotides, and its deduced amino-acid sequence, except for the initiator methionine, was identical with that determined previously. Ferritin cDNA is 725 bp in length with an ORF of 516 nucleotides. Artemin amino-acid residues 32,185 are most similar to ferritin, but artemin is enriched in cysteines. The abundance of cysteines and their intramolecular spatial distribution suggest that artemin protects embryos against oxidative damage and/or that its function is redox regulated. The conserved regions in artemin and ferritin monomers are structurally similar to one another and both proteins assemble into oligomers. However, modeling of the quaternary structure indicated that artemin multimers lack the central space used for metal storage that characterizes ferritin oligomers, implying different roles for this protein. Probing of Northern blots revealed two artemin transcripts, one of 3.5 kb and another of 2.2 kb. These transcripts decreased in parallel and had almost disappeared by 16 h of development. The ferritin transcript of 0.8 kb increased slightly during reinitiation of development, then declined, and was almost completely gone by 16 h. Clearly, the loss of artemin and ferritin during embryo development is due to transcriptional regulation and proteolytic degradation of the proteins. [source]


The solution structure of gomesin, an antimicrobial cysteine-rich peptide from the spider

FEBS JOURNAL, Issue 4 2002
Nicolas Mandard
Gomesin is the first peptide isolated from spider exhibiting antimicrobial activities. This highly cationic peptide is composed of 18 amino-acid residues including four cysteines forming two disulfide linkages. The solution structure of gomesin has been determined using proton two-dimensional NMR (2D-NMR) and restrained molecular dynamics calculations. The global fold of gomesin consists in a well-resolved two-stranded antiparallel ,,sheet connected by a noncanonical ,,turn. A comparison between the structures of gomesin and protegrin-1 from porcine and androctonin from scorpion outlines several common features in the distribution of hydrophobic and hydrophilic residues. The N- and C-termini, the ,,turn and one face of the ,,sheet are hydrophilic, but the hydrophobicity of the other face depends on the peptide. The similarities suggest that the molecules interact with membranes in an analogous manner. The importance of the intramolecular disulfide bridges in the biological activity of gomesin is being investigated. [source]


Human and Drosophila UDP-galactose transporters transport UDP- N -acetylgalactosamine in addition to UDP-galactose

FEBS JOURNAL, Issue 1 2002
Hiroaki Segawa
A putative Drosophila nucleotide sugar transporter was characterized and shown to be the Drosophila homologue of the human UDP-Gal transporter (hUGT). When the Drosophila melanogaster UDP-Gal transporter (DmUGT) was expressed in mammalian cells, the transporter protein was localized in the Golgi membranes and complemented the UDP-Gal transport deficiency of Lec8 cells but not the CMP-Sia transport deficiency of Lec2 cells. DmUGT and hUGT were expressed in Saccharomyces cerevisiae cells in functionally active forms. Using microsomal vesicles isolated from Saccharomyces cerevisiae expressing these transporters, we unexpectedly found that both hUGT and DmUGT could transport UDP-GalNAc as well as UDP-Gal. When amino-acid residues that are conserved among human, murine, fission yeast and Drosophila UGTs, but are distinct from corresponding ones conserved among CMP-Sia transporters (CSTs), were substituted by those found in CST, the mutant transporters were still active in transporting UDP-Gal. One of these mutants in which Asn47 was substituted by Ala showed aberrant intracellular distribution with concomitant destabilization of the protein product. However, this mutation was suppressed by an Ile51 to Thr second-site mutation. Both residues were localized within the first transmembrane helix, suggesting that the structure of the helix contributes to the stabilization and substrate recognition of the UGT molecule. [source]


Structural and functional studies of cinnamomin, a new type II ribosome-inactivating protein isolated from the seeds of the camphor tree

FEBS JOURNAL, Issue 22 2001
Liang Xie
Cinnamomin is a new type II ribosome-inactivating protein (RIP). Its A-chain exhibits RNA N -glycosidase activity to inactivate the ribosome and thus inhibit protein synthesis, whereas the glycosylated B-chain is a lectin. The primary structure of cinnamomin, which exhibits approximately 55% identity with those of ricin and abrin, was deduced from the nucleotide sequences of cDNAs of cinnamomin A- and B-chains. It is composed of a total of 549 amino-acid residues: 271 residues in the A-chain, a 14-residue linker and 264 residues in the B-chain. To explore its biological function, the cinnamomin A-chain was expressed in Escherichia coli with a yield of 100 mg per L of culture, and purified through two-step column chromatography. After renaturation, the recovery of the enzyme activity of the expressed A-chain was 80% of that of native A-chain. Based on the modeling of the three-dimensional structure of the A-chain, the functional roles of five amino acids and the only cysteine residues were investigated by site-directed mutagenesis or chemical modification. The conserved single mutation of the five amino-acid residues led to 8,50-fold losses of enzymatic activity, suggesting that these residues were crucial for maintaining the RNA N -glycosidase activity of the A-chain. Most interestingly, the strong electric charge introduced at the position of the single cysteine in A-chain seemed to play a role in enzyme/substrate binding. [source]


Analysis of the interaction of 16S rRNA and cytoplasmic membrane with the C-terminal part of the Streptococcus pneumoniae Era GTPase

FEBS JOURNAL, Issue 21 2001
Julie Qi Hang
Era, an essential GTPase, plays a regulatory role in several cellular processes. The Era protein of Streptococcus pneumoniae has recently been shown to bind to 16S rRNA and the cytoplasmic membrane. However, exact locations of Era responsible for RNA- and membrane-binding were unknown. To identify the regions in Era that interact with the RNA and membrane, the C-terminal part of S. pneumoniae Era was systematically deleted while the N-terminal part, responsible for the GTPase activity of the protein, was kept intact. The resulting truncated Era proteins were purified and characterized. The C-terminal deletion of 9 or 19 amino-acid residues did not affect 16S rRNA-binding activity while further deletions of the C-terminus (29,114 amino-acid residues) abolished the activity. These results indicate that the integrity of the putative KH domain of Era, spanning the amino-acid residues between ,,22,83 from the C-terminus, is required for 16S rRNA-binding. Furthermore, the Era proteins with a deletion up to 45 residues from the C-terminus retained membrane-binding activity, but longer deletions significantly reduced the activity. These results indicate that part of the putative KH domain is also required for membrane-binding. Thus, these results indicate for the first time that the regions critical for the membrane- and 16S rRNA-binding activities of Era overlap. The era gene with a deletion of 9 or 19 codons from its 3, terminus complemented an Escherishia coli mutant strain deficient in Era production whereas the genes with longer deletions failed to do so, thereby indicating that the KH domain is essential for Era function. Taken together, the results of this study indicate that the putative KH domain is required for 16S rRNA-binding activity and that part of the KH domain is also required for membrane-binding activity. The results also suggest that the interaction between Era and 16S rRNA is essential for bacterial growth. [source]


Functional analysis of polar amino-acid residues in membrane associated regions of the NHE1 isoform of the mammalian Na+/H+ exchanger

FEBS JOURNAL, Issue 17 2001
Rakhilya Murtazina
The NHE1 isoform of the Na+/H+ exchanger is a ubiquitous plasma membrane protein that regulates intracellular pH in mammalian cells. Site-specific mutagenesis was used to examine the functional role of conserved, polar amino-acid residues occurring in segments of the protein associated with the membrane. Seventeen mutant proteins were assessed by characterization of intracellular pH changes in stably transfected cells that lacked an endogenous Na+/H+ exchanger. All of the mutant proteins were targeted correctly to the plasma membrane and were expressed at similar levels. Amino-acid residues Glu262 and Asp267 were critical to Na+/H+ exchanger activity while mutation of Glu391 resulted in only a partial reduction in activity. The Glu262,Gln mutant was expressed partially as a deglycosylated protein with increased sensitivity to trypsin treatment in presence of Na+. Substitution of mutated Glu262, Asp267 and Glu391 with alternative acidic residues restored Na+/H+ exchanger activity. The Glu262,Asp mutant had a decreased affinity for Li+, but its activity for Na+ and H+ ions was unaffected. The results support the hypothesis that side-chain oxygen atoms in a few, critically placed amino acids are important in Na+/H+ exchanger activity and the acidic amino-acid residues at positions 262, 267 and 391 are good candidates for being involved in Na+ coordination by the protein. [source]


Stepwise proteolytic removal of the , subdomain in ,-lactalbumin

FEBS JOURNAL, Issue 15 2001
The protein remains folded, can form the molten globule in acid solution
Bovine ,-lactalbumin (,-LA) is an ,/, protein which adopts partly folded states when dissolved at low pH (A-state), by removal of the protein-bound calcium at neutral pH and low salt concentration (apo-state), as well as in aqueous trifluoroethanol. Previous spectroscopic studies have indicated that the A-state of ,-LA at pH 2.0, considered a prototype molten globule, has a native-like fold in which the helical core is mostly retained, while the , subdomain is less structured. Here, we investigate the conformational features of three derivatives of ,-LA characterized by a single peptide bond fission or a deletion of 12 or 19/22 amino-acid residues of the , subdomain of the native protein (approximately from residue 34 to 57). These ,-LA derivatives were obtained by limited proteolysis of the protein in its partly folded state(s). A nicked ,-LA species consisting of fragments 1-,3,40 and 41,123 (nicked-LA) was prepared by thermolytic digestion of the 123-residue chain of ,-LA in 50% (v/v) aqueous trifluoroethanol. Two truncated or gapped protein species given by fragments 1,40 and 53,123 (des,1-LA) or fragments 1,34 and 54-,57,123 (des,2-LA) were obtained by digestion of ,-LA with pepsin in acid or with proteinase K at neutral pH in its apo-state, respectively. The two protein fragments of nicked or gapped ,-LA are covalently linked by the four disulfide bridges of the native protein. CD measurements revealed that, in aqueous solution at neutral pH and in the presence of calcium, the three protein species maintain the helical secondary structure of intact ,-LA, while the tertiary structure is strongly affected by the proteolytic cleavages of the chain. Temperature effects of CD signals in the far- and near-UV region reveal a much more labile tertiary structure in the ,-LA derivatives, while the secondary structure is mostly retained even upon heating. In acid solution at pH 2.0, the three ,-LA variants adopt a conformational state essentially identical to the molten globule displayed by intact ,-LA, as demonstrated by CD measurements. Moreover, they bind strongly the fluorescent dye 8-anilinonaphthalene-1-sulfonate, which is considered a diagnostic feature of the molten globule of proteins. Therefore, the , subdomain can be removed from the ,-LA molecule without impairing the capability of the rest of the chain to adopt a molten globule state. The results of this protein dissection study provide direct experimental evidence that in the ,-LA molten globule only the , domain is structured. [source]


Structural consequences of site-directed mutagenesis in flexible protein domains

FEBS JOURNAL, Issue 8 2001
56)S mutant of RhoGDI, NMR characterization of the L(5
The guanine dissociation inhibitor RhoGDI consists of a folded C-terminal domain and a highly flexible N-terminal region, both of which are essential for biological activity, that is, inhibition of GDP dissociation from Rho GTPases, and regulation of their partitioning between membrane and cytosol. It was shown previously that the double mutation L55S/L56S in the flexible region of RhoGDI drastically decreases its affinity for Rac1. In the present work we study the effect of this double mutation on the conformational and dynamic properties of RhoGDI, and describe the weak interaction of the mutant with Rac1 using chemical shift mapping. We show that the helical content of the region 45,56 of RhoGDI is greatly reduced upon mutation, thus increasing the entropic penalty for the immobilization of the helix, and contributing to the loss of binding. In contrast to wild-type RhoGDI, no interaction with Rac1 could be identified for amino-acid residues of the flexible domain of the mutant RhoGDI and only very weak binding was observed for the folded domain of the mutant. The origins of the effect of the L55S/L56S mutation on the binding constant (decreased by at least three orders of magnitude relative to wild-type) are discussed with particular reference to the flexibility of this part of the protein. [source]


Insect silk contains both a Kunitz-type and a unique Kazal-type proteinase inhibitor

FEBS JOURNAL, Issue 7 2001
Xavier Nirmala
Insect silk is made up of structural fibrous (fibroins) and sticky (sericins) proteins, and contains a few small peptides of hitherto unknown functions. We demonstrate that two of these peptides inhibit bacterial and fungal proteinases (subtilisin, proteinase K and pronase). These ,silk proteinase inhibitors' 1 and 2 (SPI 1 and 2) are produced in the middle section of the silk-secreting glands prior to cocoon spinning and their production is controlled at transcription level. The full length cDNA of pre-SPI 1 contains 443 nucleotides and encodes a peptide of 76 amino-acid residues, of which 20 make up a signal sequence. The mature SPI 1 (6056.7 Da, 56 residues) is a typical thermostable Kunitz-type proteinase inhibitor with Arg in P1 position. The cDNA of pre-SPI 2 consists of 260 nucleotides and yields a putative secretory peptide of 58 amino-acid residues. The functional SPI 2 (3993 Da, 36 residues) is a single-domain Kazal-type proteinase inhibitor with unique structural features: free segment of the N-terminus is reduced to a single amino-acid residue, lack of CysI and CysV precludes formation of the A-ring and provides increased flexibility to the C-ring, and absence of several residues around the normal position of CysV shortens and changes the , helix segment of the protein. The structure reveals that the length and arrangement of the B-ring, including exposure of the P1 residue, and the position of the C-terminus relative to the B-loop, are essential for the activity of the Kazal-type inhibitors. [source]


Effects of proline mutations in the major house dust mite allergen Der f 2 on IgE-binding and histamine-releasing activity

FEBS JOURNAL, Issue 22 2000
Toshiro Takai
Der f 2 is the major group 2 allergen from house dust mite Dermatophagoides farinae and is composed of 129 amino-acid residues. Wild-type and six proline mutants of Der f 2 (P26A, P34A, P66A, P79A, P95A, and P99A) expressed in Escherichia coli were refolded and purified. Formations of intramolecular disulfide bonds in the purified proteins were confirmed correct. The apparent molecular masses analyzed by gel-filtration were 14,15 kDa. The IgE-binding capacity in the sera of seven mite-allergic patients, inhibitory activity for IgE-binding to immobilized wild-type Der f 2, and activity to stimulate peripheral blood basophils to release histamine in two volunteers were analyzed. P95A and P99A, which slightly differed from the wild-type Der f 2 in their CD spectrum, showed reduced IgE-binding, reduced inhibitory activity, and less histamine-releasing activity than the wild-type. P34A also showed reduced allergenicity. Considering that Pro95, Pro99 and Pro34 are closely located in loops at one end of the tertiary structure of Der f 2, we concluded that these loop regions included an IgE-binding site common to all tested patients. P66A showed reduced IgE-binding in two sera out of seven. P26A and P79A showed no reduced allergenicity. However, in immunoblot analysis after SDS/PAGE under reduced conditions, P79A showed no or markedly reduced IgE-binding while the other mutants showed IgE-binding corresponding to that in the assay using correctly refolded proteins. This suggests that Pro79 is involved in refolding of Der f 2. The findings in this study are important for the understanding of the antigenic structure of mite group 2 allergens and for manipulation of the allergens for specific immunotherapy. [source]


Involvement of Gln937 of Streptococcus downei GTF-I glucansucrase in transition-state stabilization

FEBS JOURNAL, Issue 13 2000
Vincent Monchois
Multiple alignment of deduced amino-acid sequences of glucansucrases (glucosyltransferases and dextransucrases) from oral streptococci and Leuconostoc mesenteroides has shown them to share a well-conserved catalytic domain. A portion of this domain displays homology to members of the ,-amylase family (glycoside hydrolase family 13), which all have a (,/,)8 barrel structure. In the glucansucrases, however, the ,-helix and ,-strand elements are circularly permuted with respect to the order in family 13. Previous work has shown that amino-acid residues contributing to the active site of glucansucrases are situated in structural elements that align with those of family 13. In ,-amylase and cyclodextrin glucanotransferase, a histidine residue has been identified that acts to stabilize the transition state, and a histidine is conserved at the corresponding position in all other members of family 13. In all the glucansucrases, however, the aligned position is occupied by glutamine. Mutants of glucosyltransferase I were constructed in which this glutamine, Gln937, was changed to histidine, glutamic acid, aspartic acid, asparagine or alanine. The effects on specific activity, ability to form glucan and ability to transfer glucose to a maltose acceptor were examined. Only histidine could substitute for glutamine and maintain Michaelis,Menten kinetics, albeit at a greatly reduced kcat, showing that Gln937 plays a functionally equivalent role to the histidine in family 13. This provides additional evidence in support of the proposed alignment of the (,/,)8 barrel structures. Mutation at position 937 altered the acceptor reaction with maltose, and resulted in the synthesis of novel gluco-oligosaccharides in which ,1,3-linked glucosyl units are joined sequentially to maltose. [source]


Interpretation of biological activity data of bacterial endotoxins by simple molecular models of mechanism of action

FEBS JOURNAL, Issue 3 2000
Vladimir Frecer
Lipid A moiety has been identified as the bioactive component of bacterial endotoxins (lipopolysaccharides). However, the molecular mechanism of biological activity of lipid A is still not fully understood. This paper contributes to understanding of the molecular mechanism of action of bacterial endotoxins by comparing molecular modelling results for two possible mechanisms with the underlying experimental data. Mechanisms of action involving specific binding of lipid A to a protein receptor as well as nonspecific intercalation into phospholipid membrane of a host cell were modelled and analysed. As the cellular receptor for endotoxin has not been identified, a model of a peptidic pseudoreceptor was proposed, based on molecular structure, symmetry of the lipid A moiety and the observed character of endotoxin-binding sites in proteins. We have studied the monomeric form of lipid A from Escherichia coli and its seven synthetic analogues with varying numbers of phosphate groups and correlated them with known biological activities determined by the Limulus assay. Gibbs free energies associated with the interaction of lipid A with the pseudoreceptor model and intercalation into phospholipid membrane calculated by molecular mechanics and molecular dynamics methods were used to compare the two possible mechanisms of action. The results suggest that specific binding of lipid A analogues to the peptidic pseudoreceptor carrying an amphipathic cationic binding pattern BHPHB (B, basic; H, hydrophobic; P, polar residue, respectively) is energetically more favourable than intercalation into the phospholipid membrane. In addition, binding affinities of lipid A analogues to the best minimum binding sequence KFSFK of the pseudoreceptor correlated with the experimental Limulus activity parameter. This correlation enabled us to rationalize the observed relationship between the number and position of the phosphate groups in the lipid A moiety and its biological activity in terms of specific ligand,receptor interactions. If lipid A,receptor interaction involves formation of phosphate-ammonium ion-pair(s) with cationic amino-acid residues, the specific mechanism of action was fully consistent with the underlying experimental data. As a consequence, recognition of lipid A variants by an amphipathic binding sequence BHPHB of a host-cell protein receptor might represent the initial and/or rate-determining molecular event of the mechanism of action of lipid A (or endotoxin). The insight into the molecular mechanism of action and the structure of the lipid A-binding pattern have potential implications for rational drug design strategies of endotoxin-neutralizing agents or binding factors. [source]


Hev b 9, an enolase and a new cross-reactive allergen from Hevea latex and molds

FEBS JOURNAL, Issue 24 2000
Purification, characterization, cloning, expression
Natural rubber latex allergy is an IgE-mediated disease that is caused by proteins that elute from commercial latex products. A complementary DNA (cDNA) coding for Hev b 9, an enolase (2-phospho- d -glycerate hydrolyase) and allergen from latex of the rubber tree Hevea brasiliensis, was amplified by PCR. The PCR primers were designed according to conserved regions of enolases from plants. The obtained cDNA amplification product consisted of 1651 bp and encoded a protein of 445 amino-acid residues with a calculated molecular mass of 47.6 kDa. Sequence comparisons revealed high similarities of the Hevea latex enolase to mold enolases that have been identified as important allergens. In addition, the crucial amino-acid residues that participate in the formation of the catalytic site and the Mg2+ binding site of enolases were also conserved. Hevea latex enolase was produced as a recombinant protein in Escherichia coli with an N-terminal hexahistidyl tag, and purified by affinity chromatography. The yield amounted to 110 mg of purified Hev b 9 per litre of bacterial culture. The recombinant allergen bound IgE from latex, as well as mold-allergic patients, in immunoblot and ELISA experiments. The natural enolase was isolated from Hevea latex by (NH4)2SO4 precipitation and ion exchange chromatography. The natural and the recombinant (r)Hev b 9 showed equivalent enzymatic activity. Patients' IgE-antibodies preincubated with rHev b 9 lost their ability to bind to natural (n) Hev b 9, indicating the identity of the B-cell epitopes on both molecules. Cross-reactivity with two enolases from Cladosporium herbarum and Alternaria alternata was determined by inhibition of IgE-binding to these enolases by rHev b 9. Therefore, enolases may represent another class of highly conserved enzymes with allergenic potentials. [source]


Recognition of pore-forming colicin Y by its cognate immunity protein

FEMS MICROBIOLOGY LETTERS, Issue 1 2006
David, majs
Abstract Construction of hybrid immunity genes between colicin U (cui) and Y (cyi) immunity genes and site-directed mutagenesis of cyi were used to identify amino-acid residues of the colicin Y immunity protein (Cyi) involved in recognition of colicin Y. These amino-acid residues were localized close to the cytoplasmic site of the Cyi transmembrane helices T3 (S104, S107, F110, A112) and T4 (A159). Mutations in cui, which converted Cui sequence to Cyi sequence in positions 104, 107, 110, 112 and 159, resulted in an immunity gene that also conferred (besides immunity to colicin U) a high degree of immunity to colicin Y. [source]


Tracking ligand-migration pathways of carbonmonoxy myoglobin in crystals at cryogenic temperatures

ACTA CRYSTALLOGRAPHICA SECTION A, Issue 2 2010
Ayana Tomita
In order to explore the ligand-migration dynamics in myoglobin induced by photodissociation, cryogenic X-ray crystallographic investigations of carbonmonoxy myoglobin crystals illuminated by continuous wave and pulsed lasers at 1,15,kHz repetition rate have been carried out. Here it is shown that this novel method, extended pulsed-laser pumping of carbonmonoxy myoglobin, promotes ligand migration in the protein matrix by crossing the glass transition temperature repeatedly, and enables the visualization of the migration pathway of the photodissociated ligands in native Mb at cryogenic temperatures. It has revealed that the migration of the CO molecule into each cavity induces structural changes of the amino-acid residues around the cavity which result in the expansion of the cavity. The sequential motion of the ligand and the cavity suggests a self-opening mechanism of the ligand-migration channel arising by induced fit. [source]


A neutron crystallographic analysis of phosphate-free ribonuclease A at 1.7,Å resolution

ACTA CRYSTALLOGRAPHICA SECTION D, Issue 9 2009
Daichi Yagi
A neutron crystallographic analysis of phosphate-free bovine pancreatic RNase A has been carried out at 1.7,Å resolution using the BIX-4 single-crystal diffractometer at the JRR-3 reactor of the Japan Atomic Energy Agency. The high-resolution structural model allowed us to determine that His12 acts mainly as a general base in the catalytic process of RNase A. Numerous other distinctive structural features such as the hydrogen positions of methyl groups, hydroxyl groups, prolines, asparagines and glutamines were also determined at 1.7,Å resolution. The protonation and deprotonation states of all of the charged amino-acid residues allowed us to provide a definitive description of the hydrogen-bonding network around the active site and the H atoms of the key His48 residue. Differences in hydrogen-bond strengths for the ,-helices and ,-sheets were inferred from determination of the hydrogen-bond lengths and the H/D-exchange ratios of the backbone amide H atoms. The correlation between the B factors and hydrogen-bond lengths of the hydration water molecules was also determined. [source]


Hyperstability and crystal structure of cytochrome c555 from hyperthermophilic Aquifex aeolicus

ACTA CRYSTALLOGRAPHICA SECTION D, Issue 8 2009
Marii Obuchi
In order to elucidate the relationship between the stability and the structure of the monohaem cytochrome c555 (AA c555) from the hyperthermophilic bacterium Aquifex aeolicus, chemical denaturation and crystal structure determination were carried out. AA c555 exhibited higher stability than the thermophilic Hydrogenobacter thermophilus cytochrome c552 (HT c552), which is one of the most stable cytochromes c. The three-dimensional crystal structure of AA c555, which was determined using the multiple anomalous dispersion technique at 1.15,Å resolution, included a unique 14-residue extra helix, while the side-chain interactions of several amino-acid residues responsible for the stability of HT c552 were conserved in AA c555. The side chain of the Met61 residue in the extra helix was aligned towards the haem, forming a coordination bond between the Met S and haem Fe atoms. In other cytochromes c the corresponding regions always form , loops which also include the haem-liganding Met residue and are known to be involved in the initial step in cytochrome c denaturation. The formation of the extra helix in AA c555 results in the highest helix content, 59.8%, among the monohaem cytochromes c. The extra helix should mainly contribute to the hyperstability of AA c555 and is presumed to be a novel strategy of cytochromes c for adaptation to a hyperthermophilic environment. [source]


Structure of the C-terminal domain of nsp4 from feline coronavirus

ACTA CRYSTALLOGRAPHICA SECTION D, Issue 8 2009
Ioannis Manolaridis
Coronaviruses are a family of positive-stranded RNA viruses that includes important pathogens of humans and other animals. The large coronavirus genome (26,31,kb) encodes 15,16 nonstructural proteins (nsps) that are derived from two replicase polyproteins by autoproteolytic processing. The nsps assemble into the viral replication,transcription complex and nsp3, nsp4 and nsp6 are believed to anchor this enzyme complex to modified intracellular membranes. The largest part of the coronavirus nsp4 subunit is hydrophobic and is predicted to be embedded in the membranes. In this report, a conserved C-terminal domain (,100 amino-acid residues) has been delineated that is predicted to face the cytoplasm and has been isolated as a soluble domain using library-based construct screening. A prototypical crystal structure at 2.8,Å resolution was obtained using nsp4 from feline coronavirus. Unmodified and SeMet-substituted proteins were crystallized under similar conditions, resulting in tetragonal crystals that belonged to space group P43. The phase problem was initially solved by single isomorphous replacement with anomalous scattering (SIRAS), followed by molecular replacement using a SIRAS-derived composite model. The structure consists of a single domain with a predominantly ,-helical content displaying a unique fold that could be engaged in protein,protein interactions. [source]


De novo sulfur SAD phasing of the lysosomal 66.3,kDa protein from mouse

ACTA CRYSTALLOGRAPHICA SECTION D, Issue 3 2009
Kristina Lakomek
The 66.3,kDa protein from mouse is a soluble protein of the lysosomal matrix. It is synthesized as a glycosylated 75,kDa preproprotein which is further processed into 28 and 40,kDa fragments. Despite bioinformatics approaches and molecular characterization of the 66.3,kDa protein, the mode of its maturation as well as its physiological function remained unknown. Therefore, it was decided to tackle this question by means of X-ray crystallography. After expression in a human fibrosarcoma cell line, the C-terminally His-tagged single-chain 66.3,kDa variant and the double-chain form consisting of a 28,kDa fragment and a 40,kDa fragment were purified to homogeneity but could not be separated during the purification procedure. This mixture was therefore used for crystallization. Single crystals were obtained and the structure of the 66.3,kDa protein was solved by means of sulfur SAD phasing using data collected at a wavelength of 1.9,Å on the BESSY beamline BL14.2 of Freie Universität Berlin. Based on the anomalous signal, a 22-atom substructure comprising 21 intrinsic S atoms and one Xe atom with very low occupancy was found and refined at a resolution of 2.4,Å using the programs SHELXC/D and SHARP. Density modification using SOLOMON and DM resulted in a high-quality electron-density map, enabling automatic model building with ARP/wARP. The initial model contained 85% of the amino-acid residues expected to be present in the asymmetric unit of the crystal. Subsequently, the model was completed and refined to an Rfree factor of 19.8%. The contribution of the single Xe atom to the anomalous signal was analyzed in comparison to that of the S atoms and was found to be negligible. This work should encourage the use of the weak anomalous scattering of intrinsic S atoms in SAD phasing, especially for proteins, which require both expensive and time-consuming expression and purification procedures, preventing extensive screening of heavy-atom crystal soaks. [source]