Home About us Contact | |||
Amino Acid Replacement (amino + acid_replacement)
Selected AbstractsNonpeptide Integrin Antagonists: RGD Mimetics Incorporating Substituted Azabicycloalkanes as Amino Acid ReplacementsEUROPEAN JOURNAL OF ORGANIC CHEMISTRY, Issue 8 2007Leonardo Manzoni Abstract Azabicyclo[4.3.0]alkanes appropriately substituted on both cycles have been synthesized as potential scaffold mimics of the RGD signaling motif of integrin. Two sets of functionalized azabicycloalkanes have been examined. In vitro assays established that 21 has a good affinity specifically for ,v,3. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2007) [source] Evidence for the adaptive evolution of the carbon fixation gene rbcL during diversification in temperature tolerance of a clade of hot spring cyanobacteriaMOLECULAR ECOLOGY, Issue 5 2003S. R. Miller Abstract Determining the molecular basis of enzyme adaptation is central to understanding the evolution of environmental tolerance but is complicated by the fact that not all amino acid differences between ecologically divergent taxa are adaptive. Analysing patterns of nucleotide sequence evolution can potentially guide the investigation of protein adaptation by identifying candidate codon sites on which diversifying selection has been operating. Here, I test whether there is evidence for molecular adaptation of the carbon fixation gene rbcL for a clade of hot spring cyanobacteria in the genus Synechococcus that has diverged in thermotolerance. Amino acid replacements during Synechococcus radiation have resulted in an increase in the number of hydrophobic residues in the RbcLs of more thermotolerant strains. A similar increase in hydrophobicity has been observed for many thermostable proteins. Maximum likelihood models which allow for heterogeneity among codon sites in the ratio of nonsynonymous to synonymous nucleotide substitutions estimated a class of amino acid sites as a target of positive selection. Depending on the model, a single amino acid site that interacts with a flexible element involved in the opening and closing of the active site was estimated with either low or moderate support to be a member of this class. Site-directed mutagenesis approaches are being explored in order to directly test its adaptive significance. [source] Novel MPZ Mutation In A Sporadic CMT PatientJOURNAL OF THE PERIPHERAL NERVOUS SYSTEM, Issue 1 2001E Bellone Mutations in the gene for the major structural protein component of peripheral nerve myelin, myelin protein zero (MPZ), are associated with some forms of hereditary neuropathies such as Charcot-Marie-Tooth disease type 1B (CMT1B), Dejerine-Sottas syndrome (DSS) and congenital hypomyelinating neuropathy (CHN). The common pathological characteristics of these allelic disorders are severe demyelination and remyelination of peripheral nerves. Recently, MPZ mutations were also found in patients with the axonal form of CMT neuropathy (CMT2). We studied a patient with negative familiar history and clinical and electrophysiological features of Charcot-Marie-Tooth disease: distal muscle weakness and atrophy, foot deformities (pes cavus), and severely reduced nerve conduction velocities in the motor and sensory nerves. The sural nerve biopsy showed marked loss of myelinated fibers, few onion bulbs, and a high percentage of fibers showing excessive myelin outfoldings. DNA analysis excluded CMT1A duplication by Southern blot and by pulsed field gel electrophoresis methods. SSCP analysis of all six exons of MPZ revealed a shift band in exon 2 in the patient's DNA. No such difference was detected in normal controls. Direct sequencing disclosed a G , A transition at nucleotide position 181. This base substitution predicts the replacement of aspartic acid with asparagine at codon 61. A mutation at the same codon (but different amino acid replacement) was recently identified in a family with the axonal type of CMT, in which the disease was autosomal dominantly inherited. This finding provides further confirmation of the role of MPZ gene in peripheral neuropathies and suggests that MPZ coding region mutations may account for a considerable number of CMT cases which do not involve DNA duplication on 17p11.2-p12. This research was partially supported by a MURST and an Ateneo grant to FA, by a Ministero della Sanità grant to PM. Our laboratory is a member of the European Charcot-Marie-Tooth Consortium co-ordinated by Prof. Christine Van Broeckhoven. [source] Evaluating the Ability of Polyhydroxyalkanoate Synthase Mutants to Produce P(3HB -co- 3HA) from Soybean OilMACROMOLECULAR BIOSCIENCE, Issue 1 2009Takeharu Tsuge Abstract Polyhydroxyalkanoate (PHA) synthase from Pseudomonas sp 61-3 (PhaC1Ps) is able to synthesize P(3HB -co- 3HA), consisting of a 3HB unit and medium-chain-length 3HA units of 6,12 carbon atoms. Expression vectors encoding 76 PhaC1Ps mutants with an amino acid replacement at position 130, 325, 477 or 481 were individually introduced into Ralstonia eutropha. The mutant enzyme genes were evaluated in terms of their abilities to synthesize P(3HB -co- 3HA) using soybean oil as a carbon source. 20 mutants showed significantly high accumulation levels of PHA exceeding 30 wt.-% and as high as 57 wt.-%. It was found that hydrophobic amino acids at the positions are more likely to enhance accumulation of PHA in R. eutropha. [source] Insect chymotrypsins: chloromethyl ketone inactivation and substrate specificity relative to possible coevolutional adaptation of insects and plants,ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY (ELECTRONIC), Issue 3 2009Adriana R. Lopes Abstract Insect digestive chymotrypsins are present in a large variety of insect orders but their substrate specificity still remains unclear. Four insect chymotrypsins from 3 different insect orders (Dictyoptera, Coleoptera, and two Lepidoptera) were isolated using affinity chromatography. Enzymes presented molecular masses in the range of 20 to 31,kDa and pH optima in the range of 7.5 to 10.0. Kinetic characterization using different colorimetric and fluorescent substrates indicated that insect chymotrypsins differ from bovine chymotrypsin in their primary specificity toward small substrates (like N- benzoyl-L-Tyr p- nitroanilide) rather than on their preference for large substrates (exemplified by Succynil-Ala-Ala-Pro-Phe p- nitroanilide). Chloromethyl ketones (TPCK, N- ,-tosyl-L-Phe chloromethyl ketone and Z-GGF-CK, N- carbobenzoxy-Gly-Gly-Phe-CK) inactivated all chymotrypsins tested. Inactivation rates follow apparent first-order kinetics with variable second order rates (TPCK, 42 to 130,M,1,s,1; Z-GGF-CK, 150 to 450,M,1,s,1) that may be remarkably low for S. frugiperda chymotrypsin (TPCK, 6,M,1,s,1; Z-GGF-CK, 6.1,M,1,s,1). Homology modelling and sequence alignment showed that in lepidopteran chymotrypsins, differences in the amino acid residues in the neighborhood of the catalytic His 57 may affect its pKa value. This is proposed as the cause of the decrease in His 57 reactivity toward chloromethyl ketones. Such amino acid replacement in the active site is proposed to be an adaptation to the presence of dietary ketones. © 2009 Wiley Periodicals, Inc. [source] Variation of the melanocortin 1 receptor gene in the macaquesAMERICAN JOURNAL OF PRIMATOLOGY, Issue 8 2008Kazuhiro Nakayama Abstract Melanocortin 1 receptor (MC1R), a G-coupled seven-transmembrane receptor protein, plays a key role in the regulation of melanin synthesis in mammals. Sequence variation of the MC1R gene (MC1R) has been associated with pigmentation phenotypes in humans and in several animal species. The macaques (genus Macaca) are known to show a marked inter-specific variation in coat color although the causative genetic variation remains unclear. We investigated nucleotide sequences of the MC1R in 67 individuals of 18 macaque species with different coat color phenotypes including black and agouti. Twenty-eight amino acid replacements were identified in the macaques, but none of these amino acid replacements could explain the black coat color of Macaca silenus and the Sulawesi macaque species. Our molecular evolutionary analysis has revealed that nonsynonymous substitution/synonymous substitution (dN/dS) ratio of the MC1R has not been uniform in the macaque groups and, moreover, their coat color and dN/dS ratio were not related. These results suggest that the MC1R is unlikely to be responsible for the coat color variation of the macaques and functions of MC1R other than pigmentation might be associated with the different selective pressures on the MC1R in macaques. Am. J. Primatol. 70:778,785, 2008. © 2008 Wiley-Liss, Inc. [source] Structural and thermodynamic encoding in the sequence of rat microsomal cytochrome b5,BIOPOLYMERS, Issue 5 2008Juliette T. J. Lecomte Abstract The water-soluble domain of rat microsomal cytochrome b5 is a convenient protein with which to inspect the connection between amino acid sequence and thermodynamic properties. In the absence of its single heme cofactor, cytochrome b5 contains a partially folded stretch of ,30 residues. This region is recognized as prone to disorder by programs that analyze primary structures for such intrinsic features. The cytochrome was subjected to amino acid replacements in the folded core (I12A), in the portion that refolds only when in contact with the heme group (N57P), and in both (F35H/H39A/L46Y). Despite the difficulties associated with measuring thermodynamic quantities for the heme-bound species, it was possible to rationalize the energetic consequences of both types of replacements and test a simple equation relating apoprotein and holoprotein stability. In addition, a phenomenological relationship between the change in Tm (the temperature at the midpoint of the thermal transition) and the change in thermodynamic stability determined by chemical denaturation was observed that could be used to extend the interpretation of incomplete holoprotein stability data. Structural information was obtained by nuclear magnetic resonance spectroscopy toward an atomic-level analysis of the effects. © 2007 Wiley Periodicals, Inc. Biopolymers 89: 428,442, 2008. This article was originally published online as an accepted preprint. The "Published Online" date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com [source] |