Home About us Contact | |||
Amino Acid Repeats (amino + acid_repeat)
Selected AbstractsSingle amino acid repeats in signal peptidesFEBS JOURNAL, Issue 15 2010abaj There has been an increasing interest in single amino acid repeats ever since it was shown that these are the cause of a variety of diseases. Although a systematic study of single amino acid repeats is challenging, they have subsequently been implicated in a number of functional roles. In general surveys, leucine runs were among the most frequent. In the present study, we present a detailed investigation of repeats in signal peptides of secreted and type I membrane proteins in comparison with their mature parts. We focus on eukaryotic species because single amino acid repeats are generally rather rare in archaea and bacteria. Our analysis of over 100 species shows that repeats of leucine (but not of other hydrophobic amino acids) are over-represented in signal peptides. This trend is most pronounced in higher eukaryotes, particularly in mammals. In the human proteome, although less than one-fifth of all proteins have a signal peptide, approximately two-thirds of all leucine repeats are located in these transient regions. Signal peptides are cleaved early from the growing polypeptide chain and then degraded rapidly. This may explain why leucine repeats, which can be toxic, are tolerated at such high frequencies. The substantial fraction of proteins affected by the strong enrichment of repeats in these transient segments highlights the bias that they can introduce for systematic analyses of protein sequences. In contrast to a general lack of conservation of single amino acid repeats, leucine repeats were found to be more conserved than the remaining signal peptide regions, indicating that they may have an as yet unknown functional role. [source] Promoter elements of rice susceptibility genes are bound and activated by specific TAL effectors from the bacterial blight pathogen, Xanthomonas oryzae pv. oryzaeNEW PHYTOLOGIST, Issue 4 2010Patrick Römer Summary ,Plant pathogenic bacteria of the genus Xanthomonas inject transcription activator-like effector (TALe) proteins that bind to and activate host promoters, thereby promoting disease or inducing plant defense. TALes bind to corresponding UPT (up-regulated by TALe) promoter boxes via tandemly arranged 34/35-amino acid repeats. Recent studies uncovered the TALe code in which two amino acid residues of each repeat define specific pairing to UPT boxes. ,Here we employed the TALe code to predict potential UPT boxes in TALe-induced host promoters and analyzed these via ,-glucuronidase (GUS) reporter and electrophoretic mobility shift assays (EMSA). ,We demonstrate that the Xa13, OsTFX1 and Os11N3 promoters from rice are induced directly by the Xanthomonas oryzae pv. oryzae TALes PthXo1, PthXo6 and AvrXa7, respectively. We identified and functionally validated a UPT box in the corresponding rice target promoter for each TALe and show that box mutations suppress TALe-mediated promoter activation. Finally, EMSA demonstrate that code-predicted UPT boxes interact specifically with corresponding TALes. ,Our findings show that variations in the UPT boxes of different rice accessions correlate with susceptibility or resistance of these accessions to the bacterial blight pathogen. [source] Model peptide-based system used for the investigation of metal ions binding to histidine-containing polypeptidesBIOPOLYMERS, Issue 6 2010Manuela Murariu Abstract The reaction of histidine-containing polypeptides with toxic and essential metals and the molecular mechanism of complexation has yet to be determined, particularly with respect to the conformational changes of the interacting macromolecules. Therefore, a system of oligopeptides containing histidine residues in various positions of Ala or Gly sequences has been designed and used in heavy metal comparatively binding experiments. The role of spacing residues (Gly and Ala repeats) in selecting the various conformations was investigated. The newly synthesized peptides and metal ion adducts have been characterized by Fourier transform infrared spectroscopy (FTIR) as well as electrospray ion trap mass spectrometry (ESI,MS) and circular dichroism (CD). The analysis of CD-spectra of the four peptides in water revealed that the secondary structure depends much on the position of each amino acid in the peptide backbone. Our peptides system reveals various binding mechanisms of metal ions to peptides depending on the position of histidine residue and the corresponding conformations of Ala or Gly sequences. Biological and medical consequences of conformational changes of metal-bound peptides are further discussed. Thus, the binding of heavy metals to four peptides may serve as a model system with respect to the conformational consequences of the metal addition on the amino acid repeats situated in prion protein. © 2010 Wiley Periodicals, Inc. Biopolymers 93:497,508, 2010. This article was originally published online as an accepted preprint. The "Published Online" date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com [source] |