Home About us Contact | |||
Amazonian Rain Forest (amazonian + rain_forest)
Selected AbstractsSpatial Distribution of Vascular Epiphytes (including Hemiepiphytes) in a Lowland Amazonian Rain Forest (Surumoni Crane Plot) of Southern Venezuela,BIOTROPICA, Issue 3 2000Jürgen Nieder ABSTRACT The mobile crane of the Surumoni project allowed for the first time ever a complete inventory and spatial description of the epiphytic vegetation of a tropical lowland rain forest plot (1.5 ha), at La Esmeralda on the upper Orinoco River, Venezuela. A total of 778 individual vascular epiphytes of 53 species was found, dominated by 19 orchid species and 14 species of Araceae. Fifty percent of all individual plants were obligate ant-garden epiphytes. The distribution of epiphytes was highly clumped and not random. The clumped occurrence of holoepiphytes (complete life cycle on host tree) was the consequence of the rarity of suitable phorophytes (host trees; e.g., size and age) in the plot and the preference of ants for gaps where most of the ant-garden epiphytes were found. In comparison, hemiepiphytes were distributed more evenly because of greater independence from tree suitability. The dispersal modes of epiphytes did not explain their distribution patterns. There was no consistent difference in distribution between anemochorous and zoochorous epiphytes, presumably because availability of suitable substrate is the more important factor for epiphyte establishment and growth. Whereas the vertical distribution of epiphytes could be attributed largely to deterministic factors such as physiological adaptation and requirements, horizontal distribution appeared to be governed by suitable substrate, which in turn seemed to be governed by stochastic gap formation. RESUMEN En el context0 del proyecto Surumoni se hizo un inventario y un analisis espacial de la vegetación epifitica de un plot de 1.5 ha en el alto rio Orinoco cerca de La Esmeralda (Venezuela) en 1997. Consiste de 778 plantas individuales de 53 especies, entre las cuales destacan las orquideas (19 especies) y las aráceas (14 especies). El 50 porciento de todas las epifitas se encuentran en los jardines epifiticas de hormigas. Las plantas epifiticas muestran una distribución aglomerada y no casual. En el caso de las holoepifitas esto es la consecuencia de la raridad de forófitas aduecadas (p.e., altura y edad) en el plot y la preferencia de claros ("gaps") por parte de las hormigas. En comparación, tienen una distribución más homogénea las hemi-epifitas porque se desarrollan más independientemente de la calidad de sus forofitas. Las estrategias de dispersión de las epifitas sólo en parte explica sus patrones de distribución. No hay diferencias consistentes entre especies anemocorias y zoocorias, probablemente porque la disponibilidad de sustrato adecuado es el factor más importante para el establecimiento y desarrollo de epifitas. La distribución vertical de las epifitas se caracteriza por una zonación marcada, visible en las diferencias significantes entre la rnayoria de las taxas epifiticas. Mientras que se puede atribuir la distribución vertical a factores deterministicos como adaptaciones y exigencias fisiológicos de las plantas epifiticas, su distribución horizontal se arregla según la presencia de sustrato adecuado, que por su parte es resultado de factores estoquáticos en la formación de claros. [source] Soil moisture dynamics in an eastern Amazonian tropical forestHYDROLOGICAL PROCESSES, Issue 12 2006Rogério D. Bruno Abstract We used frequency-domain reflectometry to make continuous, high-resolution measurements for 22 months of the soil moisture to a depth of 10 m in an Amazonian rain forest. We then used these data to determine how soil moisture varies on diel, seasonal and multi-year timescales, and to better understand the quantitative and mechanistic relationships between soil moisture and forest evapotranspiration. The mean annual precipitation at the site was over 1900 mm. The field capacity was approximately 0·53 m3 m,3 and was nearly uniform with soil depth. Soil moisture decreased at all levels during the dry season, with the minimum of 0·38 m3 m,3 at 3 m beneath the surface. The moisture in the upper 1 m showed a strong diel cycle with daytime depletion due to evapotranspiration. The moisture beneath 1 m declined during both day and night due to the combined effects of evapotranspiration, drainage and a nighttime upward movement of water. The depth of active water withdrawal changed markedly over the year. The upper 2 m of soil supplied ,56% of the water used for evapotranspiration in the wet season and ,28% of the water used in the dry season. The zone of active water withdrawal extended to a depth of at least 10 m. The day-to-day rates of moisture withdrawal from the upper 10 m of soil during rain-free periods agreed well with simultaneous measurements of whole-forest evapotranspiration made by the eddy covariance technique. The forest at the site was well adapted to the normal cycle of wet and dry seasons, and the dry season had only a small effect on the rates of land,atmosphere water vapour exchange. Copyright © 2006 John Wiley & Sons, Ltd. [source] Demographic and life-history correlates for Amazonian treesJOURNAL OF VEGETATION SCIENCE, Issue 6 2005Henrique E.M. Nascimento Abstract Questions: Which demographic and life-history differences are found among 95 sympatric tree species? Are there correlations among demographic parameters within this assemblage? Location: Central Amazonian rain forest. Methods: Using long-term data from 24 1,ha permanent plots, eight characteristics were estimated for each species: wood density, annual mortality rate, annual recruitment rate, mean stem diameter, maximum stem diameter, mean stem-growth rate, maximum stem-growth rate, population density. Results: An ordination analysis revealed that tree characteristics varied along two major axes of variation, the major gradient expressing light requirements and successional status, and the second gradient related to tree size. Along these gradients, four relatively discrete tree guilds could be distinguished: fast-growing pioneer species, shade-tolerant sub-canopy species, canopy trees, and emergent species. Pioneers were uncommon and most trees were canopy or emergent species, which frequently had low mortality and recruitment. Wood density was negatively associated with tree mortality, recruitment, and growth rates when all species were considered. Growth rates varied markedly among and within species, with pioneers exhibiting far faster and less variable growth rates than did the other species. Slow growth in subcanopy species relative to canopy and emergent trees was not a simple consequence of mean tree size, but apparently resulted from physiological constraints imposed by low-light and other conditions in the forest understorey. Conclusions: Trees of Amazonian rain forests could be classified with some success into four relatively distinctive guilds. However, several demographic and life-history traits, such as those that distinguish early and late successional species, probably vary along a continuum, rather than being naturally grouped into relatively discrete categories. [source] Resource distribution and soil moisture content can regulate bait control in an ant assemblage in Central Amazonian forestAUSTRAL ECOLOGY, Issue 3 2010FABRICIO BEGGIATO BACCARO Abstract Resources influence population growth, interspecific interactions, territoriality and, in combination with moisture content, affect terrestrial arthropod distribution and abundance. Ants are usually described as interactive and compete in transitive hierarchies, where the dominants behaviourally exclude subordinate species from food resources. In this study, we evaluated the effects of (i) dominant ants, soil moisture and an artificial resource gradient on the number of ant species attracted to baits; and (ii) how soil moisture and an artificial resource gradient change the number of controlled baits in a Central Amazonian rain forest. We sampled 30 100-m-long transects, located at least 200 m apart. The transects were established with six different bait densities varying between six and 41 baits and the soil moisture content was measured at 10 points for each transect. Six ant species were considered dominant, and had negative correlations with the number of species at baits (r2 = 0.186; F1,28 = 6.419; P = 0.017). However, almost half of the transects showed low abundance of dominant species (<30%), and relatively high number of species (mean of 20.1 ± 8.75). Resource availability and soil moisture had negative and positive correlations, with number of controlled baits. These results suggest that, even though the dominance is relatively poorly developed on the floor of this tropical forest, both resource availability and soil moisture affect resource control, and thus, the number of species that use baits. [source] Demographic and life-history correlates for Amazonian treesJOURNAL OF VEGETATION SCIENCE, Issue 6 2005Henrique E.M. Nascimento Abstract Questions: Which demographic and life-history differences are found among 95 sympatric tree species? Are there correlations among demographic parameters within this assemblage? Location: Central Amazonian rain forest. Methods: Using long-term data from 24 1,ha permanent plots, eight characteristics were estimated for each species: wood density, annual mortality rate, annual recruitment rate, mean stem diameter, maximum stem diameter, mean stem-growth rate, maximum stem-growth rate, population density. Results: An ordination analysis revealed that tree characteristics varied along two major axes of variation, the major gradient expressing light requirements and successional status, and the second gradient related to tree size. Along these gradients, four relatively discrete tree guilds could be distinguished: fast-growing pioneer species, shade-tolerant sub-canopy species, canopy trees, and emergent species. Pioneers were uncommon and most trees were canopy or emergent species, which frequently had low mortality and recruitment. Wood density was negatively associated with tree mortality, recruitment, and growth rates when all species were considered. Growth rates varied markedly among and within species, with pioneers exhibiting far faster and less variable growth rates than did the other species. Slow growth in subcanopy species relative to canopy and emergent trees was not a simple consequence of mean tree size, but apparently resulted from physiological constraints imposed by low-light and other conditions in the forest understorey. Conclusions: Trees of Amazonian rain forests could be classified with some success into four relatively distinctive guilds. However, several demographic and life-history traits, such as those that distinguish early and late successional species, probably vary along a continuum, rather than being naturally grouped into relatively discrete categories. [source] |