Home About us Contact | |||
Hardness Ratios (hardness + ratio)
Selected AbstractsEFFECT OF PENTOSANASE ON DOUGH AND BREAD PROPERTIES PRODUCED BY DIFFERENT TYPES OF FLOURSJOURNAL OF FOOD QUALITY, Issue 2 2008ÖZKAN KOYUNCU ABSTRACT The effects of pentosanase at different doses (20, 60 and 100 ppm) on physical dough properties and bread quality were studied using three types of wheat flours. Flour A was a regular bread flour, flour B had a high hardness ratio and protein content, and flour C was prepared from the same blend of flour A but had a high extraction ratio. Regarding farinograph data, water absorption values of the high extraction (86%) flour C and high hardness (65%) blend flour B increased with introduction of pentosanase. Extensibility values of the flours increased moderately with pentosanase addition, while resistance and energy values decreased. The volume of breads made with flours C and B decreased upon addition of pentosanase. But loaf volume of breads prepared with regular bread flour A with 50% hardness and 76% extraction rate increased with high levels of pentosanase addition. In conclusion, flour A as a regular bread flour gave satisfactory results with pentosanase supplementations, whereas the harder-blend (65%) and higher-extraction-rate (85%) flours from the same cultivars did not. PRACTICAL APPLICATIONS Pentosanase addition was more effective on soluble pentosans than on insoluble ones. Because of these effects, it enhanced the bread-making properties of regular flour more effectively than those of the high-extraction and harder-blend flours of the same cultivars. [source] Hardness of Three Resin-Modified Glass-Ionomer Restorative Materials as a Function of Depth and TimeJOURNAL OF ESTHETIC AND RESTORATIVE DENTISTRY, Issue 4 2009HOWARD W. ROBERTS DMD ABSTRACT Statement of the Problem:, The polymerization of bulk-placed resin-modified glass-ionomer (RMGI) restoratives is compromised when penetration of the curing light is limited because of the materials' thickness. It is unknown if additional post light-curing resin polymerization and/or glass-ionomer setting occurs over time to ensure adequate polymerization. Purpose:, The primary objective was to evaluate the depth of cure of various thicknesses of RMGI restorative products over 1 year using Knoop hardness (KH) testing. Materials and Methods:, The materials were placed in Delrin molds having an internal diameter of 5.0 mm and heights of 2, 3, 4, and 5 mm and were photopolymerized with a halogen light-curing unit. Five specimens of each depth were prepared for each time period evaluated. Specimens were stored in darkness at 37 ± 2°C and 98 ± 2% humidity until being tested at 24 hours, 1 week, and 1, 3, 6, 9, and 12 months after fabrication. Mean KH values were calculated for the bottom and top surfaces of each thickness group and used to determine bottom/top hardness ratios. Data were compared using two-way analysis of variance (factors of time, thickness) at a 0.05 significance level with Scheffé's post hoc analysis, where required. Results:, The materials had relatively stable top surface KH, which permitted valid assessment of changes in bottom surface KH over time. The bottom surface KH of some RMGIs changed significantly over time (p < 0.001), but degrees of change were material dependent. Certain RMGIs demonstrated a potential for statistically significant post light-activation hardening; however, that too was material dependent. As compared with top surface KH, deeper layers of the thicker RMGI specimens consistently failed to achieve an adequate degree of polymerization. Conclusion:, Although certain RMGI materials demonstrate a potential for post light-activation chemically initiated resin polymerization and/or polyalkenoate acid/base reaction, these reactions may not be sufficient to ensure that the material is adequately polymerized for long-term success. This is particularly true when RMGI materials are placed in thicker layers where curing light penetration may be compromised. CLINICAL SIGNIFICANCE RMGI materials should not be placed in bulk but photopolymerized in layers to ensure adequate light activation. The results of this study suggest that Photac-Fil Quick be placed in layers no thicker than 2 mm while Fuji II LC and Vitremer may be placed in layers up to 3 mm in thickness. [source] The XMM-SSC survey of hard-spectrum XMM,Newton sources , I. Optically bright sourcesMONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 4 2007M. J. Page ABSTRACT We present optical and X-ray data for a sample of serendipitous XMM,Newton sources that are selected to have 0.5,2 versus 2,4.5 keV X-ray hardness ratios which are harder than the X-ray background. The sources have 2,4.5 keV X-ray flux ,10,14 erg cm,2 s,1, and in this paper we examine a subsample of 42 optically bright (r < 21) sources; this subsample is 100 per cent spectroscopically identified. All but one of the optical counterparts are extragalactic, and we argue that the single exception, a Galactic M star, is probably a coincidental association rather than the correct identification of the X-ray source. The X-ray spectra of all the sources are consistent with heavily absorbed power laws (21.8 < log NH < 23.4), and all of them, including the two sources with 2,10 keV intrinsic luminosities of <1042 erg s,1, appear to be absorbed active galactic nuclei (AGN). The majority of the sources show only narrow emission lines in their optical spectra, implying that they are type 2 AGN. Three sources have 2,10 keV luminosities of >1044 erg s,1, and two of these sources have optical spectra which are dominated by narrow emission lines, that is, are type 2 QSOs. Only a small fraction of the sources (7/42) show broad optical emission lines, and all of these have NH < 1023 cm,2. This implies that ratios of X-ray absorption to optical/ultraviolet extinction equivalent to >100 times the Galactic gas-to-dust ratio are rare in AGN absorbers (at most a few per cent of the population), and may be restricted to broad absorption line QSOs. Seven objects appear to have an additional soft X-ray component in addition to the heavily absorbed power law; all seven are narrow emission-line objects with z < 0.3 and 2,10 keV intrinsic luminosities <1043 erg s,1. We consider the implications of our results in the light of the AGN unified scheme. We find that the soft components in narrow-line objects are consistent with the unified scheme provided that >4 per cent of broad-line AGN (BLAGN) have ionized absorbers that attenuate their soft X-ray flux by >50 per cent. In at least one of the X-ray-absorbed BLAGN in our sample the X-ray spectrum requires an ionized absorber, consistent with this picture. [source] X-ray emission from optical novae in M 31,ASTRONOMISCHE NACHRICHTEN, Issue 2 2010W. Pietsch Abstract The first supersoft source (SSS) identification with an optical nova in M 31 was based on ROSAT observations. Twenty additional X-ray counterparts (mostly identified as SSS by their hardness ratios) were detected using archival ROSAT, XMM-Newton and Chandra observations obtained before July 2002. Based on these results optical novae seem to constitute the major class of SSS in M 31. An analysis of archival Chandra HRC-I and ACIS-I observations obtained from July 2004 to February 2005 demonstrated that M 31 nova SSS states lasted from months to about 10 years. Several novae showed short X-ray outbursts starting within 50 d after the optical outburst and lasting only two to three months. The fraction of novae detected in soft X-rays within a year after the optical outburst was more than 30%. Ongoing optical nova monitoring programs, optical spectral follow-up and an up-to-date nova catalogue are essential for the X-ray work. Re-analysis of archival nova data to improve positions and find additional nova candidates are urgently needed for secure recurrent nova identifications. Dedicated XMM-Newton/Chandra monitoring programs for X-ray emission from optical novae covering the centre area of M 31 continue to provide interesting new results (e.g. coherent 1105 s pulsations in the SSS counterpart of nova M31N 2007-12b). The SSS light curves of novae allow us , together with optical information , to estimate the mass of the white dwarf, of the ejecta and the burned mass in the outburst. Observations of the central area of M 31 allow us , in contrast to observations in the Galaxy , to monitor many novae simultaneously and proved to be prone to find many interesting SSS and nova types (© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] The X-ray source population of the Andromeda galaxy M 31,ASTRONOMISCHE NACHRICHTEN, Issue 2 2008W. Pietsch Abstract First studies of the X-ray source population of M 31 were performed with the Einstein Observatory and ROSAT. High resolution Chandra Observatory images not only spatially resolved the center area but also supernova remnants (SNRs) in the galaxy. Source catalogues of restricted areas were presented with high astrometric accuracy. Also luminosity function studies and studies of individual sources based on Chandra and XMM-Newton observations led to a better knowledge of the X-ray source population. An XMM-Newton source catalog based on archival observations revealed more than 850 sources down to a 0.2,4.5 keV luminosity of 1035 erg s,1. EPIC hardness ratios as well as informations from earlier X-ray, optical, and radio catalogues were used to distinguish between different source classes (SNRs, supersoft sources (SSSs), X-ray binaries (XRBs), globular cluster sources within M 31, and foreground stars and objects in the background). However, many sources could only be classified as "hard". These sources may either be XRBs or Crab-like SNRs in M 31 or background sources. Two of the globular cluster sources could be identified as low mass XRBs with a neutron star as compact object as they showed type I X-ray bursts. Many of the SSSs were identified as optical novae. Inspired by these results an XMM-Newton survey of the entire D25 disk of M 31 and a dedicated program to monitor X-ray counterparts of optical novae in M 31 was started. We discuss implications for further nearby galaxy studies. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] |