Home About us Contact | |||
Haplotype Similarity (haplotype + similarity)
Selected AbstractsA Regression-based Association Test for Case-control Studies that Uses Inferred Ancestral Haplotype SimilarityANNALS OF HUMAN GENETICS, Issue 5 2009Youfang Liu Summary Association methods based on haplotype similarity (HS) can overcome power and stability issues encountered in standard haplotype analyses. Current HS methods can be generally classified into evolutionary and two-sample approaches. We propose a new regression-based HS association method for case-control studies that incorporates covariate information and combines the advantages of the two classes of approaches by using inferred ancestral haplotypes. We first estimate the ancestral haplotypes of case individuals and then, for each individual, an ancestral-haplotype-based similarity score is computed by comparing that individual's observed genotype with the estimated ancestral haplotypes. Trait values are then regressed on the similarity scores. Covariates can easily be incorporated into this regression framework. To account for the bias in the raw p-values due to the use of case data in constructing ancestral haplotypes, as well as to account for variation in ancestral haplotype estimation, a permutation procedure is adopted to obtain empirical p-values. Compared with the standard haplotype score test and the multilocus T2 test, our method improves power when neither the allele frequency nor linkage disequilibrium between the disease locus and its neighboring SNPs is too low and is comparable in other scenarios. We applied our method to the Genetic Analysis Workshop 15 simulated SNP data and successfully pinpointed a stretch of SNPs that covers the fine-scale region where the causal locus is located. [source] Gene-Trait Similarity Regression for Multimarker-Based Association AnalysisBIOMETRICS, Issue 3 2009Jung-Ying Tzeng Summary We propose a similarity-based regression method to detect associations between traits and multimarker genotypes. The model regresses similarity in traits for pairs of "unrelated" individuals on their haplotype similarities, and detects the significance by a score test for which the limiting distribution is derived. The proposed method allows for covariates, uses phase-independent similarity measures to bypass the needs to impute phase information, and is applicable to traits of general types (e.g., quantitative and qualitative traits). We also show that the gene-trait similarity regression is closely connected with random effects haplotype analysis, although commonly they are considered as separate modeling tools. This connection unites the classic haplotype sharing methods with the variance-component approaches, which enables direct derivation of analytical properties of the sharing statistics even when the similarity regression model becomes analytically challenging. [source] Genome-wide association studies using haplotype clustering with a new haplotype similarityGENETIC EPIDEMIOLOGY, Issue 6 2010Lina Jin Abstract Association analysis, with the aim of investigating genetic variations, is designed to detect genetic associations with observable traits, which has played an increasing part in understanding the genetic basis of diseases. Among these methods, haplotype-based association studies are believed to possess prominent advantages, especially for the rare diseases in case-control studies. However, when modeling these haplotypes, they are subjected to statistical problems caused by rare haplotypes. Fortunately, haplotype clustering offers an appealing solution. In this research, we have developed a new befitting haplotype similarity for "affinity propagation" clustering algorithm, which can account for the rare haplotypes primely, so as to control for the issue on degrees of freedom. The new similarity can incorporate haplotype structure information, which is believed to enhance the power and provide high resolution for identifying associations between genetic variants and disease. Our simulation studies show that the proposed approach offers merits in detecting disease-marker associations in comparison with the cladistic haplotype clustering method CLADHC. We also illustrate an application of our method to cystic fibrosis, which shows quite accurate estimates during fine mapping. Genet. Epidemiol. 34: 633,641, 2010. © 2010 Wiley-Liss, Inc. [source] A Regression-based Association Test for Case-control Studies that Uses Inferred Ancestral Haplotype SimilarityANNALS OF HUMAN GENETICS, Issue 5 2009Youfang Liu Summary Association methods based on haplotype similarity (HS) can overcome power and stability issues encountered in standard haplotype analyses. Current HS methods can be generally classified into evolutionary and two-sample approaches. We propose a new regression-based HS association method for case-control studies that incorporates covariate information and combines the advantages of the two classes of approaches by using inferred ancestral haplotypes. We first estimate the ancestral haplotypes of case individuals and then, for each individual, an ancestral-haplotype-based similarity score is computed by comparing that individual's observed genotype with the estimated ancestral haplotypes. Trait values are then regressed on the similarity scores. Covariates can easily be incorporated into this regression framework. To account for the bias in the raw p-values due to the use of case data in constructing ancestral haplotypes, as well as to account for variation in ancestral haplotype estimation, a permutation procedure is adopted to obtain empirical p-values. Compared with the standard haplotype score test and the multilocus T2 test, our method improves power when neither the allele frequency nor linkage disequilibrium between the disease locus and its neighboring SNPs is too low and is comparable in other scenarios. We applied our method to the Genetic Analysis Workshop 15 simulated SNP data and successfully pinpointed a stretch of SNPs that covers the fine-scale region where the causal locus is located. [source] |