Haplotype G (haplotype + g)

Distribution by Scientific Domains


Selected Abstracts


Associations among cytoplasmic molecular markers, gender, and components of fitness in Silene vulgaris, a gynodioecious plant

MOLECULAR ECOLOGY, Issue 3 2003
D. E. Mccauley
Abstract It has been suggested that the dynamics of chloroplast DNA (cpDNA) or mitochondrial DNA (mtDNA) genetic markers used in studies of plant populations could be influenced by natural selection acting elsewhere in the genome. This could be particularly true in gynodioecious plants if cpDNA or mtDNA genetic markers are in gametic disequilibrium with genes responsible for sex expression. In order to investigate this possibility, a natural population of the gynodioecious plant Silene vulgaris was used to study associations among mtDNA haplotype, cpDNA haplotype, sex and some components of fitness through seed. Individuals were sampled for mtDNA and cpDNA haplotype as determined using restriction fragment length polymorphism (RFLP) methods, sex (female or hermaphrodite), fruit number, fruit set, seeds/fruit and seed germination. The sex of surviving germinating seeds was also noted. All individuals in the population fell into one of two cytoplasmic categories, designated haplotypes f and g by a unique electrophoretic signature in both the mtDNA and cpDNA. The subset of the population carrying haplotype g included a significantly higher proportion of females when compared with the sex ratio of the subset carrying the f haplotype. Haplotype g had a significantly higher fitness when measured by fruit number, fruit set and seeds/fruit, whereas haplotype f had significantly higher fitness when measured by seed germination. Offspring of individuals carrying haplotype g included a significantly greater proportion of females when compared with offspring of individuals carrying the f haplotype. Other studies of gynodioecious plants have shown that females generally have higher fitness through seed than hermaphrodites, but in this study not all fitness differences between haplotypes could be predicted from differences in haplotype-specific sex ratio alone. Rather, some differences in haplotype-specific fitness were due to differences in fitness between individuals of the same sex, but carrying different haplotypes. The results are discussed with regard to the potential for hitchhiking selection to influence the dynamics of the noncoding regions used to designate the cpDNA and mtDNA haplotypes. [source]


Cholesteryl Ester Transfer Protein (CETP) Genetic Variation and Early Onset of Non-Fatal Myocardial Infarction

ANNALS OF HUMAN GENETICS, Issue 6 2008
V. Meiner
Summary Although Cholesteryl Ester Transfer Protein (CETP) mediates the transfer of cholesteryl esters and triglycerides between lipoprotein particles and thus plays a crucial role in reverse cholesterol transport, the association of variations in the CETP gene with acute myocardial infarction (MI) remains unclear. In this study we examined whether common genetic variation in the CETP gene is related to early-onset non-fatal MI risk in a population-based case-control study from western Washington State. Genotyping for the CETP ,2708 G/A, ,971 A/G, ,629 A/C, Intron-I TaqI G/A and exon-14 A/G (I405V) SNPs was performed in 578 cases with first acute non-fatal MI and in 666 demographically similar controls, free of clinical cardiovascular disease, identified randomly from the community. In-person interviews and non-fasting blood specimens provided data on coronary heart disease risk factors. In men, there was little evidence for an association between single SNPs and MI risk, but in women the age- and race-adjusted OR was found to be significant in 4 out of the 5 CETP single variants. Haplotype analysis revealed two haplotypes associated with MI risk among men. As compared to men homozygous for the most common haplotype D (,2708 G, ,971 G, ,629 C, TaqI G and exon-14 A), the fully-adjusted multiplicative model identified haplotype G (,2708 G, ,971 A, ,629 A, TaqI G and exon-14 G) was associated with a 4.0-6.0-fold increased risk of MI for each additional copy; [95%CI 2.4,14.8] and haplotype B (,2708 G, ,971 G, ,629 A, TaqI A and exon-14 A) showed a significant decreased risk for early onset MI [OR = 0.18; 95%CI 0.04 , 0.75]. An evolutionary-based haplotype analysis indicated that the two haplotypes associated with the MI risk are most evolutionarily divergent from the other haplotypes. Variation at the CETP gene locus is associated with the risk of early-onset non-fatal MI. This association was found to be independent of HDL-C levels. These data and the sex-specific findings require confirmation in other populations. [source]


Associations among cytoplasmic molecular markers, gender, and components of fitness in Silene vulgaris, a gynodioecious plant

MOLECULAR ECOLOGY, Issue 3 2003
D. E. Mccauley
Abstract It has been suggested that the dynamics of chloroplast DNA (cpDNA) or mitochondrial DNA (mtDNA) genetic markers used in studies of plant populations could be influenced by natural selection acting elsewhere in the genome. This could be particularly true in gynodioecious plants if cpDNA or mtDNA genetic markers are in gametic disequilibrium with genes responsible for sex expression. In order to investigate this possibility, a natural population of the gynodioecious plant Silene vulgaris was used to study associations among mtDNA haplotype, cpDNA haplotype, sex and some components of fitness through seed. Individuals were sampled for mtDNA and cpDNA haplotype as determined using restriction fragment length polymorphism (RFLP) methods, sex (female or hermaphrodite), fruit number, fruit set, seeds/fruit and seed germination. The sex of surviving germinating seeds was also noted. All individuals in the population fell into one of two cytoplasmic categories, designated haplotypes f and g by a unique electrophoretic signature in both the mtDNA and cpDNA. The subset of the population carrying haplotype g included a significantly higher proportion of females when compared with the sex ratio of the subset carrying the f haplotype. Haplotype g had a significantly higher fitness when measured by fruit number, fruit set and seeds/fruit, whereas haplotype f had significantly higher fitness when measured by seed germination. Offspring of individuals carrying haplotype g included a significantly greater proportion of females when compared with offspring of individuals carrying the f haplotype. Other studies of gynodioecious plants have shown that females generally have higher fitness through seed than hermaphrodites, but in this study not all fitness differences between haplotypes could be predicted from differences in haplotype-specific sex ratio alone. Rather, some differences in haplotype-specific fitness were due to differences in fitness between individuals of the same sex, but carrying different haplotypes. The results are discussed with regard to the potential for hitchhiking selection to influence the dynamics of the noncoding regions used to designate the cpDNA and mtDNA haplotypes. [source]