Home About us Contact | |||
Hallmark Feature (hallmark + feature)
Selected AbstractsNeuroprotective Strategies to Avert Seizure-Induced Neurodegeneration in EpilepsyEPILEPSIA, Issue 2007Janice R. Naegele Summary:, Neurodegeneration in limbic circuits is a hallmark feature of chronic temporal lobe epilepsy (TLE). Studies in experimental animal models and human patients indicate that seizure-induced neuronal injury involves some active, as well as passive cell death processes. Experimental approaches that inhibit active steps in cell death programs have been shown to reduce neuronal cell death and sclerosis, but not to prevent epileptogenesis in animal models of TLE. These findings suggest that we need additional research using both animal models and brain slices from human patients to understand the pathological mechanisms underlying seizure generation. Such comparative studies will also aid in evaluating the potential therapeutic value of inhibiting cell death in seizure disorders. [source] Alternative splicing generates a family of putative secreted and membrane-associated MUC4 mucinsFEBS JOURNAL, Issue 14 2000Nicolas Moniaux The MUC4 mucin gene encodes a putative membrane-anchored mucin with predicted size of 930 kDa, for its 26.5-kb allele. It is composed of two regions, the 850-kDa mucin-type subunit MUC4, and the 80-kDa membrane-associated subunit MUC4,. In this study, we cloned and characterized unique MUC4 cDNA sequences that differ from the originally published sequence. Eight alternative splice events located downstream of the central large tandem repeat array generated eight new, distinct cDNAs. The deduced sequences of these MUC4 cDNAs (sv1- MUC4 to sv8- MUC4, the full length cDNA being called sv0- MUC4) provided seven distinct variants, five secreted forms and two membrane-associated forms. Furthermore, two other alternative splicing events located on both sides of the tandem repeat array created two variants, MUC4/Y and MUC4/X, both lacking the central tandem repeat. Therefore, MUC4 can be expressed in three distinct forms, one membrane-bound, one secreted, and one lacking the hallmark feature of mucin, the tandem repeat array. Although no specific function has yet been discovered for the family of proteins putatively produced from the unique MUC4 gene, we suspect that the MUC4 proteins may be implicated in the integrity and renewal of the epithelium. [source] Neural correlates of verbal episodic memory in patients with MCI and Alzheimer's disease,,a VBM studyINTERNATIONAL JOURNAL OF GERIATRIC PSYCHIATRY, Issue 11 2008Dirk T. Leube Abstract Objective The hippocampus is a key area for episodic memory processes. Hippocampal atrophy is a hallmark feature of Alzheimer's disease (AD). We used a new and automatized morphometric technique to better characterize brain atrophy in subjects with different levels of cognitive deficit. Methods In this study 21 participants with Mild Cognitive Impairment (MCI), 12 patients with early AD and 29 elderly control subjects were subjected to high resolution MRI and a neuropsychological test battery. Brain volume across participants, measured by voxel-based morphometry (VBM), was correlated with verbal memory capacity, measured with a verbal memory test (VLMT). Results Atrophy in the anterior hippocampus, the ento- and perirhinal cortex as well as the parahippocampal gyrus, middle temporal gyrus and anterior cingulate cortex correlated closely with episodic memory performance. Conclusions These brain areas are known to subserve episodic encoding of verbal material. The data contribute to a better understanding of atrophic brain processes in subjects at risk for AD. A combination of neuropsychological testing and voxel-based morphometry may serve as a diagnostic tool in the future. Copyright © 2008 John Wiley & Sons, Ltd. [source] The immunological basis of B-cell therapy in systemic lupus erythematosusINTERNATIONAL JOURNAL OF RHEUMATIC DISEASES, Issue 1 2010Mo Yin MOK Abstract Loss of B-cell tolerance is a hallmark feature of the pathogenesis in systemic lupus erythematosus (SLE), an autoimmune disease that is characterized by hypergammaglobulinemia and autoantibody production. These autoantibodies lead to formation of immune-complex deposition in internal organs causing inflammation and damage. Autoreactive B-cells are believed to be central in the pathophysiology of SLE. Other than its role in the production of antibodies that mediate humoral immune response, B-cells also function as antigen-presenting cells and are capable of activating T-cells. Activated B-cells may also produce pro-inflammatory cytokines that aggravate local inflammation. Abnormal B-cell homeostasis has been described in SLE patients. This may occur as a result of intrinsic B-cell defect or from aberrant regulation by maturation and survival signals. B-cell-based therapy is the current mainstream of research and development of novel therapies in SLE patients with severe and refractory disease. Potential cellular and molecular targets for B-cell therapies include cell surface molecules such as CD20 (rituximab) and CD22 (epratuzumab); co-stimulatory molecules involved in B-cell,T-cell interaction such as CTLA4 and B7 molecules (abatacept); maturation and growth factors such as B-cell activating factor and a proliferation-inducing ligand (belimumab, briobacept, atacicept) and B-cell tolerogen (abetimus). This article provides an overview on normal B-cell physiology and abnormal B-cell biology in SLE that form the immunological basis of B-cell-targeted therapy in the treatment of these patients with refractory diseases. [source] Matrine inhibits PMA-induced MMP-1 expression in human dermal fibroblastsBIOFACTORS, Issue 2 2008Eunsun Jung Abstract Matrix metalloproteinase-1 (MMP-1) plays an important role in the maintenance and turnover of extracellular matrix (ECM) macromolecules. Remodelling of extracellular matrix by MMPs is a hallmark feature of physiological and pathological processes. In this study, in order to establish the therapeutic potential of matrine, we investigated its effect on MMP-1 expression in human dermal fibroblast cells. We found that matrine inhibited both MMP-1 mRNA and protein expression induced by PMA (phorbol myristate acetate). Therefore, we characterized the inhibitory mechanism of matrine on PMA-induced MMP-1 expression. Matrine inhibited PMA-induced activation of the AP-1 promoter, an important nuclear transcription factor in MMP-1 expression. Additionally, we detected that matrine suppressed the PMA-induced phosphorylation of two mitogen-activated protein kinases, extracellular signal-regulated protein kinase and c-Jun N-terminal kinase, but did not suppress the PMA-induced phosphorylation of p38 kinase. These results suggest that matrine suppresses PMA-induced MMP-1 expression through inhibition of the AP-1 signaling pathway and also may be beneficial for treatment of some inflammatory skin disorders. [source] Leukocyte Recruitment and the Acute Inflammatory ResponseBRAIN PATHOLOGY, Issue 1 2000Paul Kubes Leukocyte recruitment is a hallmark feature of the inflammatory response. This review summarizes the generally accepted paradigm of leukocyte recruitment based on studies using intravital microscopy to visualize the microcirculation. The role of selectins and ,4 -integrin in rolling as well as integrin-mediated adhesion is discussed. However, it is becoming increasingly clear that the recruitment cascade within organs differs and therefore the review also attempts to highlight what is and is not known regarding leukocyte recruitment into the brain microvasculature. In the second part of this review, we provide some discussion of mechanisms by which the inflammatory response may be terminated. Particular emphasis on nuclear factor Nf,B and how IL10, IL13 and secreted leukocyte protease inhibitor (SLPI) may impact upon the Nf,B-dependent inflammatory response is presented. [source] Androgens, insulin resistance and vascular disease in menCLINICAL ENDOCRINOLOGY, Issue 3 2005D. Kapoor Summary Type 2 diabetes mellitus is increasing globally and is an established risk factor for the development of atherosclerotic vascular disease. Insulin resistance is the hallmark feature of type 2 diabetes and is also an important component of the metabolic syndrome. There is evidence to suggest that testosterone is an important regulator of insulin sensitivity in men. Observational studies have shown that testosterone levels are low in men with diabetes, visceral obesity (which is strongly associated with insulin resistance), coronary artery disease and metabolic syndrome. Short-term interventional studies have also demonstrated that testosterone replacement therapy produces an improvement in insulin sensitivity in men. Thus hypotestosteronaemia may have a role in the pathogenesis of insulin-resistant states and androgen replacement therapy could be a potential treatment that could be offered for improvements in glycaemic control and reduction in cardiovascular risk, particularly in diabetic men. [source] P2Y13 receptor is critical for reverse cholesterol transport,HEPATOLOGY, Issue 4 2010Aurélie C. Fabre A major atheroprotective functionality of high-density lipoproteins (HDLs) is to promote "reverse cholesterol transport" (RCT). In this process, HDLs mediate the efflux and transport of cholesterol from peripheral cells and its subsequent transport to the liver for further metabolism and biliary excretion. We have previously demonstrated in cultured hepatocytes that P2Y13 (purinergic receptor P2Y, G protein,coupled, 13) activation is essential for HDL uptake but the potential of P2Y13 as a target to promote RCT has not been documented. Here, we show that P2Y13 -deficient mice exhibited a decrease in hepatic HDL cholesterol uptake, hepatic cholesterol content, and biliary cholesterol output, although their plasma HDL and other lipid levels were normal. These changes translated into a substantial decrease in the rate of macrophage-to-feces RCT. Therefore, hallmark features of RCT are impaired in P2Y13 -deficient mice. Furthermore, cangrelor, a partial agonist of P2Y13, stimulated hepatic HDL uptake and biliary lipid secretions in normal mice and in mice with a targeted deletion of scavenger receptor class B type I (SR-BI) in liver (hypomSR-BI,knockoutliver) but had no effect in P2Y13 knockout mice, which indicate that P2Y13 -mediated HDL uptake pathway is independent of SR-BI,mediated HDL selective cholesteryl ester uptake. Conclusion: These results establish P2Y13 as an attractive novel target for modulating RCT and support the emerging view that steady-state plasma HDL levels do not necessarily reflect the capacity of HDL to promote RCT. (HEPATOLOGY 2010) [source] |