Home About us Contact | |||
Haldane's Rule (haldane + rule)
Selected AbstractsNestling sex ratio of golden-winged warblers Vermivora chrysoptera in an introgressed populationJOURNAL OF AVIAN BIOLOGY, Issue 6 2008Kate J. Neville Sex ratio biases in avian species remain controversial, although several studies have documented apparent facultative adjustment of offspring sex ratios. While hybridizing pied and collared flycatchers have exhibited sex ratio skews that may be a response to sex-based costs associated with hybridization, this appears not to be true of a hybridized population of blue-winged Vermivora pinus and golden-winged V. chrysoptera warblers. We examined the primary sex ratio of nestlings in a population of hybrid and introgressed golden-winged warblers. The sex ratio of 298 nestlings from 81 nests in the population was approximately 50:50. We conducted paternity assignments and analyzed groups of nestlings with shared genetic parents ("genetic broods") and found no difference from the expected binomial distribution, and no statistically significant relationship between parental species phenotype and nestling sex ratio. We saw no evidence of preferential production of male or female nestlings, and female hybrids were found to mate and breed in the population. This suggests that heterogametic (female) hybrids are both viable and fertile, and thus that Haldane's Rule does not apply to this system. While populations of hybridizing golden-winged warblers should be monitored for evidence of costs of heterospecific pairings, it is unlikely that adjustment of sex ratios would be the form of compensation for sub-optimal mating conditions. Our results provide support for the emerging hypothesis that hybrids suffer no disadvantage relative to golden-winged and blue-winged warblers. [source] The role of hybridization in evolutionMOLECULAR ECOLOGY, Issue 3 2001N. H. Barton Abstract Hybridization may influence evolution in a variety of ways. If hybrids are less fit, the geographical range of ecologically divergent populations may be limited, and prezygotic reproductive isolation may be reinforced. If some hybrid genotypes are fitter than one or both parents, at least in some environments, then hybridization could make a positive contribution. Single alleles that are at an advantage in the alternative environment and genetic background will introgress readily, although such introgression may be hard to detect. ,Hybrid speciation', in which fit combinations of alleles are established, is more problematic; its likelihood depends on how divergent populations meet, and on the structure of epistasis. These issues are illustrated using Fisher's model of stabilizing selection on multiple traits, under which reproductive isolation evolves as a side-effect of adaptation in allopatry. This confirms a priori arguments that while recombinant hybrids are less fit on average, some gene combinations may be fitter than the parents, even in the parental environment. Fisher's model does predict heterosis in diploid F1s, asymmetric incompatibility in reciprocal backcrosses, and (when dominance is included) Haldane's Rule. However, heterosis arises only when traits are additive, whereas the latter two patterns require dominance. Moreover, because adaptation is via substitutions of small effect, Fisher's model does not generate the strong effects of single chromosome regions often observed in species crosses. [source] GENETIC DISSECTION OF HYBRID INCOMPATIBILITIES BETWEEN DROSOPHILA SIMULANS AND D. MAURITIANA.: III.EVOLUTION, Issue 11 2003AND IMPLICATIONS FOR HALDANE, DEGREE OF DOMINANCE, HETEROGENEOUS ACCUMULATION OF HYBRID INCOMPATIBILITIES Abstract The genetic basis of Haldane,rule was investigated through estimating the accumulation of hybrid incompatibilities between Drosophila simulans and D. mauritiana by means of introgression. The accumulation of hybrid male sterility (HMS) is at least 10 times greater than that of hybrid female sterility (HFS) or hybrid lethality (HL). The degree of dominance for HMS and HL in a pure D. simulans background is estimated as 0.23,0.29 and 0.33,0.39, respectively; that for HL in an F1 background is unlikely to be very small. Evidence obtained here was used to test the Turelli-Orr model of Haldane's rule. Composite causes, especially, faster-male evolution and recessive hybrid incompatibilities, underlie Haldane's rule in heterogametic male taxa such as Drosophila (XY male and XX female). However, if faster-male evolution is driven by sexual selection, it contradicts Haldane's rule for sterility in hetero-gametic-female taxa such as Lepidoptera (ZW female and ZZ male). The hypothesis of a faster-heterogametic-sex evolution seems to fit the current data best. This hypothesis states that gametogenesis in the heterogametic sex, instead of in males per se, evolves much faster than in the homogametic sex, in part because of sex-ratio selection. This hypothesis not only explains Haldane's rule in a simple way, but also suggests that genomic conflicts play a major role in evolution and speciation. [source] Postzygotic incompatibilities between the pupfishes, Cyprinodon elegans and Cyprinodon variegatus: hybrid male sterility and sex ratio biasJOURNAL OF EVOLUTIONARY BIOLOGY, Issue 6 2006C. TECH Abstract I examined the intrinsic postzygotic incompatibilities between two pupfishes, Cyprinodon elegans and Cyprinodon variegatus. Laboratory hybridization experiments revealed evidence of strong postzygotic isolation. Male hybrids have very low fertility, and the survival of backcrosses into C. elegans was substantially reduced. In addition, several crosses produced female-biased sex ratios. Crosses involving C. elegans females and C. variegatus males produced only females, and in backcrosses involving hybrid females and C. elegans males, males made up approximately 25% of the offspring. All other crosses produced approximately 50% males. These sex ratios could be explained by genetic incompatibilities that occur, at least in part, on sex chromosomes. Thus, these results provide strong albeit indirect evidence that pupfish have XY chromosomal sex determination. The results of this study provide insight on the evolution of reproductive isolating mechanisms, particularly the role of Haldane's rule and the ,faster-male' theory in taxa lacking well-differentiated sex chromosomes. [source] Intrinsic reproductive isolation between Trinidadian populations of the guppy, Poecilia reticulataJOURNAL OF EVOLUTIONARY BIOLOGY, Issue 4 2006S. T. RUSSELL Abstract Although Trinidadian populations of the guppy, Poecilia reticulata, show considerable adaptive genetic differentiation, they have been assumed to show little or no reproductive isolation. We tested this assumption by crossing Caroni (Tacarigua River) and Oropuche (Oropuche R.) drainage populations from Trinidad's Northern Range, and by examining multiple aspects of reproductive compatibility in the F1, F2 and BC1 generations. In open-aquarium experiments, F1 males performed fewer numbers of mating behaviours relative to parental population controls. This is the first documentation of hybrid behavioural sterility within a species, and it suggests that such sterility may feasibly be involved in causing speciation. The crosses also uncovered hybrid breakdown for embryo viability, brood size and sperm counts. In contrast, no reductions in female fertility were detected, indicating that guppies obey Haldane's rule for sterility. Intrinsic isolation currently presents a much stronger obstacle to gene flow than behavioural isolation, and our results indicate that Trinidadian populations constitute a useful model for investigating incipient speciation. [source] Hybrid incompatibility is consistent with a hybrid origin of Heliconius heurippa Hewitson from its close relatives, Heliconius cydno Doubleday and Heliconius melpomene LinnaeusJOURNAL OF EVOLUTIONARY BIOLOGY, Issue 2 2005C. A. Salazar Abstract Shared ancestral variation and introgression complicates the reconstruction of phylogenetic relationships among closely related taxa. Here we use overall genomic compatibility as an alternative estimate of species relationships in a group where divergence is rapid and genetic exchange is common. Heliconius heurippa, a butterfly species endemic to Colombia, has a colour pattern genetically intermediate between H. cydno and H. melpomene: its hindwing is nearly indistinguishable from that of H. melpomene and its forewing band is an intermediate phenotype between both species. This observation has lead to the suggestion that the pattern of H. heurippa arose through hybridization. We present a genetic analysis of hybrid compatibility in crosses between the three taxa. Heliconius heurippa × H. cydno and female H. melpomene × male H. heurippa yield fertile and viable F1 hybrids, but male H. melpomene × female H. heurippa crosses yield sterile F1 females. In contrast, Haldane's rule has previously been detected between H. melpomene and H cydno in both directions. Therefore, H. heurippa is most closely related to H. cydno, with some evidence for introgression of genes from H. melpomene. The results are compatible with the hypothesis of a hybrid origin for H. heurippa. In addition, backcrosses using F1 hybrid males provide evidence for a large Z(X)-chromosome effect on sterility and for recessive autosomal sterility factors as predicted by Dominance Theory. [source] Differential strength of sex-biased hybrid inferiority in impeding gene flow may be a cause of Haldane's ruleJOURNAL OF EVOLUTIONARY BIOLOGY, Issue 2 2003Ren-Xue Wang Abstract In animals, if one sex of the F1 hybrid between two species is sterile or inviable, it is usually the heterogametic (XY or WZ) sex. This phenomenon, known as Haldane's rule, is currently thought to be coincidentally caused by different mechanisms in separate entities. The following questions have never been asked: Are heterogametic and homogametic inferiority (sterility or inviability) equivalent as isolating mechanisms? Could discrepancies between them, if existing, produce Haldane's rule? Here I consider sex-biased hybrid inferiority strictly as an isolating mechanism, and quantitatively evaluate its strength in impeding gene flow. The comparison reveals that the ability of sex-biased inferiority to impede gene flow varies according to the sex and chromosome involved. Heterogametic inferiority is a weaker barrier when unidirectional and a much stronger one when in compound reciprocal directions, compared with homogametic inferiority. Such differential strength may affect divergence in speciation and produce Haldane's rule. [source] A gene's eye view of epistasis, selection and speciationJOURNAL OF EVOLUTIONARY BIOLOGY, Issue 3 2002M. J. Wade In this mini-review, I discuss the effects of gene interaction or epistasis from a `gene's eye view.' By a `gene's eye view' of epistasis, I mean that I will consider a single, bi-allelic locus, A, whose effects on fitness result only from its interactions with alleles of another, unknown locus, X. I will show how changes in the frequencies of alleles at the background locus affect the relationship of alleles at the A -locus to fitness. Changing the genetic background changes the fundamental characteristics of the A -locus, such as the magnitude and sign of allelic effects on fitness, and, consequently, it changes the strength and pattern of selection. I consider each of the four kinds of pair,wise interactions between two loci and show that some kinds of epistasis are more sensitive than others to population genetic subdivision. Lastly, I show that some kinds of epistasis are more likely than others to affect the process of speciation and contribute to or be responsible for general genetic features of interspecific hybrids, such as Haldane's rule. [source] Differential patterns of hybridization and introgression between the swallowtails Papilio machaon and P. hospiton from Sardinia and Corsica islands (Lepidoptera, Papilionidae)MOLECULAR ECOLOGY, Issue 6 2003R. Cianchi Abstract Proportions of hybridization and introgression between the swallowtails Papilio hospiton, endemic to Sardinia and Corsica, and the holarctic Papilio machaon, were characterized using nine fully diagnostic and two differentiated allozyme loci and a mitochondrial DNA marker. Very low frequencies of F1 hybrids were detected in both Sardinia (0,4%, average 1.4%) and Corsica (0,3%, average 0.5%), as well as of first generation backcrosses (B1). No F2 were observed, in agreement with the hybrid breakdown detected in laboratory crosses. In spite of this minimal current gene exchange, specimens carrying introgressed alleles were found in high proportions in P. machaon but in lower proportions in P. hospiton. Introgression apparently occurred through past hybridization and repeated backcrossing, as evidenced by hybrid index scores and Bayesian assignment tests. Levels of introgression were low (0,1%) at two sex-linked loci and mitochondrial DNA, limited (0.4,2%) at three autosomal loci coding for dimeric enzymes, and high (up to 43%) at four autosomal loci coding for monomeric enzymes. Accordingly, selective filters are acting against foreign alleles, with differential effectiveness depending on the loci involved. The low levels of introgression at sex-linked loci and mitochondrial DNA are in agreement with Haldane's rule and suggest that introgression in P. machaon proceeds mainly through males, owing to a lower fitness of hybrid females. Papilio machaon populations showed higher levels of introgression in Sardinia than in Corsica. The role of reinforcement in the present reproductive isolation between P. machaon and P. hospiton is examined, as well as the evolutionary effects of introgressive hybridization between the two species. [source] |