Home About us Contact | |||
Hatchery Fish (hatchery + fish)
Selected AbstractsInterspecific Effects of Artifically Propagated Fish: an Additional Conservation Risk for SalmonCONSERVATION BIOLOGY, Issue 6 2002Phillip S. Levin We tested the hypothesis that hatchery-reared steelhead salmon ( Oncorhynchus mykiss) released into the Snake River Basin negatively affect the survival of wild Snake River steelhead and chinook ( O. tshawytscha) salmon. Because climatic conditions can influence salmon survival, we included an index of the El Niño,Southern Oscillation ( ENSO) as a covariate in our analyses. Based on time series of hatchery releases and rates of smolt-to-adult survival, we demonstrate that the survival of wild chinook salmon is negatively associated with hatchery releases of steelhead. The state of the ( ENSO) did not affect the strength of this relationship. We observed no relationship between survival of wild steelhead and steelhead hatchery releases. Our results suggest that industrial-scale production of hatchery fish may hinder the recovery of some threatened salmonids and that the potential interspecific impact of hatcheries must be considered as agencies begin the process of hatchery reform. Resumen: Por más de 120 años, las granjas han liberado números enormes de salmones del Pacífico para compensar las numerosas agresiones humanos a sus poblaciones, sin embargo, los impactos ecológicos de este esfuerzo masivo son poco entendidos. Evaluamos la hipótesis de que la trucha cabeza de acero ( Oncorhynchus mykiss) criada en granjas y liberada en la cuenca del Río Snake afecta negativamente la supervivencia de truchas cabeza de acero y salmones chinook ( O. tshawytscha) silvestres. Puesto que las condiciones climáticas pueden influir sobre la supervivencia del salmón, incluimos un índice de la Oscilación del Niño del Sur como covariable del análisis. En base a series de tiempo de las liberaciones de las granjas y las tasas de supervivencia hasta adulto de peces migrantes al mar, demostramos que la supervivencia del salmón chinook silvestre está negativamente correlacionada con las liberaciones de truchas cabeza de acero de las granjas. El estado de la Oscilación del Niño del Sur no afectó el grado de correlación. No observamos relación alguna entre la supervivencia de las truchas silvestres y las liberaciones de las granjas. Nuestros resultados sugieren que la producción a escala industrial de peces de granja puede obstaculizar la recuperación de algunos salmónidos amenazados y que el impacto interespecífico potencial de las granjas debería ser considerado en cuanto las agencias inicien el proceso de reforma de las granjas. [source] Diet-induced phenotypic plasticity in the skull morphology of hatchery-reared Florida largemouth bass, Micropterus salmoides floridanusECOLOGY OF FRESHWATER FISH, Issue 4 2005A. P. Wintzer Abstract , Hatchery-reared Florida largemouth bass, Micropterus salmoides floridanus, feed on inert pellet food while their wild counterparts capture elusive prey. Differences in levels of prey elusivity often mandate the use of alternate methods of prey capture. This study examines whether elusivity-based variation in prey capture translates to a phenotypic change during skull development, and if this change results in a functional difference in the feeding mechanism. The developmental pattern of the skull was conserved between hatchery and wild bass until 80,99 mm TL. At this point, wild bass quickly developed morphological changes of the jaw apparatus including a more fusiform head and elongated jaw structures. Natural development in hatchery bass, however, was retarded at this size. Post-release, the skulls of hatchery fish converged towards those of wild bass by 135 mm TL. Despite variation in skull development, no theoretical advantage in food capture was found between these two groups. Resumen 1. Los individuos de Micropterus salmoides floridanus criados en cautividad se alimentan de cápsulas inertes de comida mientras que sus congéneres salvajes capturan presas elusivas. A menudo diferencias en los niveles de elusividad de las presas permiten la utilización de métodos alternativos para capturar presas. Este estudio examina si la variación basada en la elusividad de la captura de presas se traduce en un cambio fenotípico durante el desarrollo del cráneo y si este cambio resulta en una diferencia funcional en el mecanismo de alimentación. 2. El patrón de desarrollo del cráneo se mantuvo entre individuos criados en cautividad y en individuos salvajes hasta los 80,99 mm longitud total. En este punto, los individuos salvajes desarrollaron rápidamente cambios en el aparato mandibular incluyendo una cabeza más fusiforme y estructuras mandibulares mas alargadas. Sin embargo, en individuos de cautiverio, el desarrollo natural se retrasó en este tamaño. 3. Tras una suelta, los cráneos de individuos procedentes de cautiverio convergieron hacia los individuos salvajes en los 135 mm longitud total. A pesar de la variación en el desarrollo del cráneo, no encontramos ninguna ventaja teórica en la captura de alimento entre estos dos grupos. [source] The future of stock enhancements: lessons for hatchery practice from conservation biologyFISH AND FISHERIES, Issue 2 2002Culum Brown Abstract The world's fish species are under threat from habitat degradation and over-exploitation. In many instances, attempts to bolster stocks have been made by rearing fish in hatcheries and releasing them into the wild. Fisheries restocking programmes have primarily headed these attempts. However, a substantial number of endangered species recovery programmes also rely on the release of hatchery-reared individuals to ensure long-term population viability. Fisheries scientists have known about the behavioural deficits displayed by hatchery-reared fish and the resultant poor survival rates in the wild for over a century. Whilst there remain considerable gaps in our knowledge about the exact causes of post-release mortality, or their relative contributions, it is clear that significant improvements could be made by rethinking the ways in which hatchery fish are reared, prepared for release and eventually liberated. We emphasize that the focus of fisheries research must now shift from husbandry to improving post-release behavioural performance. In this paper we take a leaf out of the conservation biology literature, paying particular attention to the recent developments in reintroduction biology. Conservation reintroduction techniques including environmental enrichment, life-skills training, and soft release protocols are reviewed and we reflect on their application to fisheries restocking programmes. It emerges that many of the methods examined could be implemented by hatcheries with relative ease and could potentially provide large increases in the probability of survival of hatchery-reared fish. Several of the necessary measures need not be time-consuming or expensive and many could be applied at the hatchery level without any further experimentation. [source] The relative roles of domestication, rearing environment, prior residence and body size in deciding territorial contests between hatchery and wild juvenile salmonJOURNAL OF APPLIED ECOLOGY, Issue 3 2003Neil B. Metcalfe Summary 1Interactions between captive-reared and wild salmonids are frequent because hatcheries annually rear millions of fish for release in conservation programmes while many thousands of domesticated fish escape from fish farms. However, the outcome of competition between captive-reared and wild fish is not clear: wild fish may be smaller and less aggressive than hatchery fish, but they have more local experience and a prior residence advantage. Moreover, it is important to know whether any competitive differences are genetic (due to the process of domestication) or due to the rearing environment. 2We therefore examined the factors influencing competition for feeding territories in juvenile Atlantic salmon. We studied the effect of domestication by using three independent stocks of both domesticated and wild-origin fish, all of which were reared in a common hatchery environment. We also used fish from the same wild stocks that had been living in the wild. Territorial contests were staged in stream tank compartments between pairs of fish differing in origin or rearing environment; the relative importance of body size and prior residence was also assessed. 3All three stocks of domesticated fish were generally dominant over wild-origin fish when both had been raised in a common hatchery environment. If the wild-origin fish were given a 2-day period of prior residence on the territory this asymmetry in dominance was reversed. However, domesticated fish did not gain any additional advantage from being prior residents. The relative body size of the two contestants had a negligible effect on contest outcomes. 4Truly wild fish (i.e. those of wild origin that had also grown up in the wild) were generally dominant over domesticated or wild-origin fish that had been hatchery-reared. Differences in body size between contestants had no effect on the outcome. 5Synthesis and applications. These results show that, while juvenile farmed Atlantic salmon are inherently more aggressive than wild-origin fish, the hatchery environment reduces their ability to compete for territories with wild resident fish. Rearing salmon in conventional hatcheries for later release into the wild where natural populations already exist may not be a prudent conservation measure; it is preferable to plant eggs or first-feeding fry rather than attempt to ,help' the fish by rearing them through the early life stages. [source] Retrospective growth analysis of Atlantic salmon Salmo salar and implications for abundance trendsJOURNAL OF FISH BIOLOGY, Issue 10 2010F. Hogan Scale archives of Atlantic salmon Salmo salar from Maine, U.S.A., were examined to determine whether ocean conditions affected the long-term trends in S. salar populations in the southern tier of the species' range in North America. To date, scale analyses of southern tier populations have been limited to hatchery fish; previous studies suggest that post-smolt growth does not influence recruitment, with the exception that winter growth may play a role in stock maturation rate. A time series of scales from the Machias and Narraguagus Rivers spanning the years 1946 to 1999 was analysed. Image analysis was used to measure intercirculi spacing, which provided proxy variables of growth rate. Post-smolt growth increment has increased since the early 1990s, as returns have decreased, suggesting that survival factors act on post-smolts independent of growth. The data support the hypothesis of a decoupling between freshwater size and early marine growth. Growth during the second sea winter was independent of post-smolt growth, suggesting that individuals are capable of significant compensatory growth. Southern tier North American stocks exhibit a similar pattern of independence between growth and survival as observed for northern tier North American stocks. These data support the inference that the recruitment of the North American and European subspecies is governed by fundamentally different mechanisms. [source] Polyculture production of juvenile fishes for survival in natureJOURNAL OF FISH BIOLOGY, Issue 2004J. S. Burke Production of seed for stock enhancement projects requires consideration of the behavioural quality of the animals to be released in the wild. Our approach to improving behavioural quality of hatchery fish is to raise them in polyculture with the plants or animals that fish normally utilize as shelter in nature. Results suggest that such ,naturalized' systems provide a broad improvement in behaviour as both predator avoidance and feeding skills were improved relative to control hatchery fish. In addition fish in a naturalized system grew better and were more tolerant of stress than were fish reared by traditional hatchery methods. We hypothesize that the spatial heterogeneity of our ,naturalized' systems provided training in both hiding and seeking and that these activities improved feed conversion and stress tolerance. [source] Population dynamics of fisheries stock enhancementJOURNAL OF FISH BIOLOGY, Issue 2004K. Lorenzen The population dynamics of fisheries stock enhancement, and its potential for generating benefits over and above those obtainable from optimal exploitation of wild stocks alone are poorly understood and highly controversial. I extend the dynamic pool theory of fishing to stock enhancement by unpacking recruitment, incorporating regulation in the recruited stock, and accounting for biological differences between wild and hatchery fish. I then analyse the dynamics of stock enhancement and its potential role in fisheries management, using the candidate stock of North Sea sole as an example. Enhancement through release of recruits or advanced juveniles is predicted to increase total yield and stock abundance, but reduce abundance of the naturally recruited stock component through compensatory responses or overfishing. Release of genetically maladapted fish reduces the effectiveness of enhancement, and is most detrimental overall if fitness of hatchery fish is only moderately compromised. As a temporary measure for rebuilding of depleted stocks, enhancement can not substitute for effort limitation, and is advantageous as an auxiliary measure only if the population has been reduced to a very low proportion of its unexploited biomass. Quantitative analysis of population dynamics is central to the responsible use of stock enhancement in fisheries management, and the necessary tools are available. [source] Predator avoidance behaviour in wild and hatchery-reared brown trout: the role of experience and domesticationJOURNAL OF FISH BIOLOGY, Issue 6 2003D. Álvarez Juvenile brown trout Salmo trutta from natural populations reacted to the presence of piscivorous brown trout by increasing the use of refuges. In contrast, second-generation hatchery fish and the offspring of wild fish raised under hatchery conditions were insensitive to predation risk. The diel pattern of activity also differed between wild and hatchery brown trout. Second-generation hatchery fish were predominantly active during daytime regardless of risk levels. Wild fish, however, showed a shift towards nocturnal activity in the presence of predators. These findings emphasize the potential role of domestication in weakening behavioural defences. They support the idea that the behavioural divergence between wild and domesticated individuals can arise from a process of direct or indirect selection on reduced responsiveness to predation risk, or as a lack of previous experience with predators. [source] Social learning and life skills training for hatchery reared fishJOURNAL OF FISH BIOLOGY, Issue 3 2001C. Brown With the stress placed on our natural resources, many fisheries increasingly rely on restocking from hatchery-reared sources in an attempt to maintain commercially viable populations. However, the mortality rates of hatchery-reared fishes during the period directly following release are very high. The successful development of restocking programs is consequently dependent upon production and release strategies that lead to improved migratory, antipredator and feeding behaviour in hatchery fish. While relevant individual experience prior to release might improve performance, social learning potentially provides a process whereby fish can acquire locally adaptive behaviour rapidly and efficiently. It is now well over a decade since Suboski & Templeton (1989) raised the possibility of using social learning processes to improve the post-release survival of hatchery-reared fishes. This period has witnessed considerable progress in the understanding of how social learning operates in fish populations. We review new methods and recent findings that suggest how social learning protocols could realistically be applied on a large scale to enhance the viability of hatchery fish prior to their release into the wild. We also suggest a practical pre-release training protocol that may be applied at the hatchery level. [source] Lower fitness of hatchery and hybrid rainbow trout compared to naturalized populations in Lake Superior tributariesMOLECULAR ECOLOGY, Issue 11 2004L. M. MILLER Abstract We have documented an early life survival advantage by naturalized populations of anadromous rainbow trout Oncorhynchus mykiss over a more recently introduced hatchery population and outbreeding depression resulting from interbreeding between the two strains. We tested the hypothesis that offspring of naturalized and hatchery trout, and reciprocal hybrid crosses, survive equally from fry to age 1+ in isolated reaches of Lake Superior tributary streams in Minnesota. Over the first summer, offspring of naturalized females had significantly greater survival than offspring of hatchery females in three of four comparisons (two streams and 2 years of stocking). Having an entire naturalized genome, not just a naturalized mother, was important for survival over the first winter. Naturalized offspring outperformed all others in survival to age 1+ and hybrids had reduced, but intermediate, survival relative to the two pure crosses. Averaging over years and streams, survival relative to naturalized offspring was 0.59 for hybrids with naturalized females, 0.37 for the reciprocal hybrids, and 0.21 for hatchery offspring. Our results indicate that naturalized rainbow trout are better adapted to the conditions of Minnesota's tributaries to Lake Superior so that they outperform the hatchery-propagated strain in the same manner that many native populations of salmonids outperform hatchery or transplanted fish. Continued stocking of the hatchery fish may conflict with a management goal of sustaining the naturalized populations. [source] Social learning of prey location in hatchery-reared Atlantic salmonJOURNAL OF FISH BIOLOGY, Issue 3 2003C. Brown Naïve, hatchery-reared Atlantic salmon Salmo salar parr were paired with demonstrators that had been pre-trained to accept live prey from the surface or from the benthos. After 6 days of observing demonstrators through a clear perspex partition the naïve fish's benthic foraging skills were tested. The results revealed that hatchery-reared Atlantic salmon can be taught to target benthic prey items by observation alone and social learning protocols can be utilized to dramatically increase benthic foraging success. The results are discussed with reference to refining hatchery-rearing practices with a view to improving the post-release survival of hatchery fishes. The role of learning, and in particular social learning, in the development foraging behaviour is highlighted. [source] |