Home About us Contact | |||
Hammerhead Ribozymes (hammerhead + ribozyme)
Selected AbstractsSynthesis and Enzymic Hydrolysis of Oligoribonucleotides Incorporating 3-Deazaguanosine: The Importance of the Nitrogen-3 Atom of Single Conserved Guanosine Residues on the Catalytic Activity of the Hammerhead RibozymeHELVETICA CHIMICA ACTA, Issue 8 2003Frank Seela Four base-modified hammerhead ribozyme/substrate complexes were constructed in which single guanosine (1) residues were replaced by 3-deazaguanosine (2) in the positions G5, G8, GL2.1, and G12. The base-modified ribozyme complexes were prepared by solid-phase synthesis of oligoribonucleotides employing the novel phosphoramidite 3 derived from 2. Phosphoramidite 3 carried a phenoxyacetyl group at the amino function and a diphenylcarbamoyl residue at the oxo group of the nucleobase. The 2,-hydroxy group was blocked with a triisopropylsilyl residue. Kinetic analysis of the phosphodiester hydrolysis showed a moderate decrease of the ribozyme catalytic activity when the residues G5 or G8 were replaced by 3-deazaguanosine and a 200-fold decrease when G12 was substituted. A 6-fold catalytic increase occurred when 3-deazaguanosine was replacing GL2.1 in the loop region. The data indicate that the N(3) atom of compound 2, in particular at position G12 is critical for the ribozyme activity. [source] Structural Investigation of a High-Affinity MnII Binding Site in the Hammerhead Ribozyme by EPR Spectroscopy and DFT Calculations.CHEMBIOCHEM, Issue 10 2003Effects of Neomycin B on Metal-Ion Binding Abstract Electron paramagnetic resonance spectroscopy and density functional theory methods were used to study the structure of a single, high-affinity MnIIbinding site in the hammerhead ribozyme. This binding site exhibits a dissociation constant Kdof 4.4 ,M in buffer solutions containing 1,M NaCl, as shown by titrations monitored by continuous wave (cw) EPR. A combination of electron spin echo envelope modulation (ESEEM) and hyperfine sublevel correlation (HYSCORE) experiments revealed that the paramagnetic manganese(II) ion in this binding site is coupled to a single nitrogen atom with a quadrupole coupling constant,of 0.7 MHz, an asymmetry parameter,of 0.4, and an isotropic hyperfine coupling constant of Aiso(14N)=2.3 MHz. All three EPR parameters are sensitive to the arrangement of the MnIIligand sphere and can therefore be used to determine the structure of the binding site. A possible location for this binding site may be at the G10.1, A9 site found to be occupied by MnIIin crystals (MacKay et al., Nature 1994, 372, 68 and Scott et al., Science 1996, 274, 2065). To determine whether the structure of the binding site is the same in frozen solution, we performed DFT calculations for the EPR parameters, based on the structure of the MnIIsite in the crystal. Computations with the BHPW91 density function in combination with a 9s7p4d basis set for the manganese(II) center and the Iglo-II basis set for all other atoms yielded values of,(14N)=+0.80 MHz, ,=0.324, and Aiso(14N)=+2.7 MHz, in excellent agreement with the experimentally obtained EPR parameters, which suggests that the binding site found in the crystal and in frozen solution are the same. In addition, we demonstrated by EPR that MnIIis released from this site upon binding of the aminoglycoside antibiotic neomycin B (Kd=1.2 ,M) to the hammerhead ribozyme. Neomycin B has previously been shown to inhibit the catalytic activity of this ribozyme (Uhlenbeck et al., Biochemistry 1995, 34, 11,186). [source] Inhibition of hepatitis B virus by lentiviral vector delivered antisense RNA and hammerhead ribozymesJOURNAL OF VIRAL HEPATITIS, Issue 4 2005K. L. Nash Summary., Chronic hepatitis B virus (HBV) infection is an important cause of cirrhosis and hepatocellular carcinoma. Current treatments are limited and may be ineffective. Nucleic acid-mediated targeting of viral mRNA is an attractive and specific approach for viral infection and lentiviral vectors provide a means to express antisense sequences or ribozymes stably in target cells permitting continuous production within that cell and its progeny. To demonstrate long-term gene expression by lentiviral vectors in hepatocytes and to introduce lentiviral vectors expressing anti-HBV genes to assess their effect against HBV, lentiviral vectors expressing a reporter gene were assessed for longevity of gene expression in hepatocytes in vitro. Hammerhead ribozymes and antisense sequences targeting the HBV encapsidation signal (,), X or surface antigen on mRNAs were cloned into lentiviral vectors and used to transduce HBV expressing hepatocytes where the effect on HBV mRNA level was assessed using ribonuclease protection. Gene expression in hepatocytes from integrated vectors continued for over 4 months without selection. Antisense RNA targeting HBs mRNA reduced this transcript, whilst antisense RNA to HBX mRNA was ineffective. Sense RNAs corresponding to , and HBX mRNA also reduced HBV mRNA levels. Ribozymes targeting HBs and HBX mRNA effectively reduced HBV mRNA levels compared with inactive constructs indicating their effect to be enzymatic rather than antisense. Lentiviral vectors can produce long-term gene expression in hepatocytes and thus permit prolonged expression of antiviral genes targeting the HBV encapsidation signal, surface and X mRNAs as treatments for chronic HBV infection. [source] Significant activity of a modified ribozyme with N7-deazaguanine at G10.1: the double-metal-ion mechanism of catalysis in reactions catalysed by hammerhead ribozymesGENES TO CELLS, Issue 8 2000Yuka Nakamatsu Background Several reports have appeared recently of experimental evidence for a double-metal-ion mechanism of catalysis in reactions catalysed by hammerhead ribozymes. In one case, hammerhead ribozyme-mediated cleavage was analysed as a function of the concentration of La3+ ions in the presence of a fixed concentration of Mg2+ ions so that the role of metal ions that are directly involved in the cleavage reaction could be monitored. The resultant bell-shaped curve for activation of cleavage was used to support the proposed double-metal-ion mechanism of catalysis. However, other studies have demonstrated that the binding of a metal ion (the most conserved P9 metal ion) to the pro-Rp oxygen (P9 oxygen) of the phosphate moiety of nucleotide A9 and to the N7 of nucleotide G10.1 is critical for efficient catalysis, despite the large distance (,20 Å) between the P9 metal ion and the labile phosphodiester group in the ground state. In fact, it was demonstrated that an added Cd2+ ion binds first to the pro-Rp phosphoryl P9 oxygen but not with the pro-Rp phosphoryl oxygen at the cleavage site. Results In earlier discussions, it was difficult to completely exclude the possibility that La3+ ions might have replaced the P9 metal ion and, as a result, created conditions represented by the bell-shaped curve. In order to clarify this situation, we examined a chemically synthesized hammerhead ribozyme (7-deaza-R34) that included a minimal modification, namely, an N7-deazaguanine residue in place of G10.1. We compared the kinetic properties of this ribozyme with those of the parental ribozyme (R34). Kinetic analysis revealed that, unlike the cases of added Cd2+ ions, the added La3+ ions did not replace the pre-existing P9 metal ion, and that the replacement of N7 by C7 at G10.1 reduced the catalytic activity to a limited extent. This result indicates that the binding of a Mg2+ ion to N7 at G10.1 is catalytically important but not indispensable. Most importantly, 7-deaza-R34 also yielded a bell-shaped curve upon addition of La3+ ions to the reaction mixture. Conclusions Since the data based on our experiments with 7-deaza-R34 are completely free from potential artefacts, due to the binding of a La3+ ion to N7 at G10.1, our results, that 7-deaza-R34 yielded a bell-shaped curve following the addition of La3+ ions to the Mg2+ -background reaction mixture, strongly supports the proposal that a double-metal-ion mechanism is operative in the cleavage reaction which is catalysed by hammerhead ribozymes. [source] Structural Investigation of a High-Affinity MnII Binding Site in the Hammerhead Ribozyme by EPR Spectroscopy and DFT Calculations.CHEMBIOCHEM, Issue 10 2003Effects of Neomycin B on Metal-Ion Binding Abstract Electron paramagnetic resonance spectroscopy and density functional theory methods were used to study the structure of a single, high-affinity MnIIbinding site in the hammerhead ribozyme. This binding site exhibits a dissociation constant Kdof 4.4 ,M in buffer solutions containing 1,M NaCl, as shown by titrations monitored by continuous wave (cw) EPR. A combination of electron spin echo envelope modulation (ESEEM) and hyperfine sublevel correlation (HYSCORE) experiments revealed that the paramagnetic manganese(II) ion in this binding site is coupled to a single nitrogen atom with a quadrupole coupling constant,of 0.7 MHz, an asymmetry parameter,of 0.4, and an isotropic hyperfine coupling constant of Aiso(14N)=2.3 MHz. All three EPR parameters are sensitive to the arrangement of the MnIIligand sphere and can therefore be used to determine the structure of the binding site. A possible location for this binding site may be at the G10.1, A9 site found to be occupied by MnIIin crystals (MacKay et al., Nature 1994, 372, 68 and Scott et al., Science 1996, 274, 2065). To determine whether the structure of the binding site is the same in frozen solution, we performed DFT calculations for the EPR parameters, based on the structure of the MnIIsite in the crystal. Computations with the BHPW91 density function in combination with a 9s7p4d basis set for the manganese(II) center and the Iglo-II basis set for all other atoms yielded values of,(14N)=+0.80 MHz, ,=0.324, and Aiso(14N)=+2.7 MHz, in excellent agreement with the experimentally obtained EPR parameters, which suggests that the binding site found in the crystal and in frozen solution are the same. In addition, we demonstrated by EPR that MnIIis released from this site upon binding of the aminoglycoside antibiotic neomycin B (Kd=1.2 ,M) to the hammerhead ribozyme. Neomycin B has previously been shown to inhibit the catalytic activity of this ribozyme (Uhlenbeck et al., Biochemistry 1995, 34, 11,186). [source] Significant activity of a modified ribozyme with N7-deazaguanine at G10.1: the double-metal-ion mechanism of catalysis in reactions catalysed by hammerhead ribozymesGENES TO CELLS, Issue 8 2000Yuka Nakamatsu Background Several reports have appeared recently of experimental evidence for a double-metal-ion mechanism of catalysis in reactions catalysed by hammerhead ribozymes. In one case, hammerhead ribozyme-mediated cleavage was analysed as a function of the concentration of La3+ ions in the presence of a fixed concentration of Mg2+ ions so that the role of metal ions that are directly involved in the cleavage reaction could be monitored. The resultant bell-shaped curve for activation of cleavage was used to support the proposed double-metal-ion mechanism of catalysis. However, other studies have demonstrated that the binding of a metal ion (the most conserved P9 metal ion) to the pro-Rp oxygen (P9 oxygen) of the phosphate moiety of nucleotide A9 and to the N7 of nucleotide G10.1 is critical for efficient catalysis, despite the large distance (,20 Å) between the P9 metal ion and the labile phosphodiester group in the ground state. In fact, it was demonstrated that an added Cd2+ ion binds first to the pro-Rp phosphoryl P9 oxygen but not with the pro-Rp phosphoryl oxygen at the cleavage site. Results In earlier discussions, it was difficult to completely exclude the possibility that La3+ ions might have replaced the P9 metal ion and, as a result, created conditions represented by the bell-shaped curve. In order to clarify this situation, we examined a chemically synthesized hammerhead ribozyme (7-deaza-R34) that included a minimal modification, namely, an N7-deazaguanine residue in place of G10.1. We compared the kinetic properties of this ribozyme with those of the parental ribozyme (R34). Kinetic analysis revealed that, unlike the cases of added Cd2+ ions, the added La3+ ions did not replace the pre-existing P9 metal ion, and that the replacement of N7 by C7 at G10.1 reduced the catalytic activity to a limited extent. This result indicates that the binding of a Mg2+ ion to N7 at G10.1 is catalytically important but not indispensable. Most importantly, 7-deaza-R34 also yielded a bell-shaped curve upon addition of La3+ ions to the reaction mixture. Conclusions Since the data based on our experiments with 7-deaza-R34 are completely free from potential artefacts, due to the binding of a La3+ ion to N7 at G10.1, our results, that 7-deaza-R34 yielded a bell-shaped curve following the addition of La3+ ions to the Mg2+ -background reaction mixture, strongly supports the proposal that a double-metal-ion mechanism is operative in the cleavage reaction which is catalysed by hammerhead ribozymes. [source] Inhibition of hepatitis B virus by lentiviral vector delivered antisense RNA and hammerhead ribozymesJOURNAL OF VIRAL HEPATITIS, Issue 4 2005K. L. Nash Summary., Chronic hepatitis B virus (HBV) infection is an important cause of cirrhosis and hepatocellular carcinoma. Current treatments are limited and may be ineffective. Nucleic acid-mediated targeting of viral mRNA is an attractive and specific approach for viral infection and lentiviral vectors provide a means to express antisense sequences or ribozymes stably in target cells permitting continuous production within that cell and its progeny. To demonstrate long-term gene expression by lentiviral vectors in hepatocytes and to introduce lentiviral vectors expressing anti-HBV genes to assess their effect against HBV, lentiviral vectors expressing a reporter gene were assessed for longevity of gene expression in hepatocytes in vitro. Hammerhead ribozymes and antisense sequences targeting the HBV encapsidation signal (,), X or surface antigen on mRNAs were cloned into lentiviral vectors and used to transduce HBV expressing hepatocytes where the effect on HBV mRNA level was assessed using ribonuclease protection. Gene expression in hepatocytes from integrated vectors continued for over 4 months without selection. Antisense RNA targeting HBs mRNA reduced this transcript, whilst antisense RNA to HBX mRNA was ineffective. Sense RNAs corresponding to , and HBX mRNA also reduced HBV mRNA levels. Ribozymes targeting HBs and HBX mRNA effectively reduced HBV mRNA levels compared with inactive constructs indicating their effect to be enzymatic rather than antisense. Lentiviral vectors can produce long-term gene expression in hepatocytes and thus permit prolonged expression of antiviral genes targeting the HBV encapsidation signal, surface and X mRNAs as treatments for chronic HBV infection. [source] Potato spindle tuber viroid: the simplicity paradox resolved?MOLECULAR PLANT PATHOLOGY, Issue 5 2007ROBERT A. OWENS SUMMARY Taxonomy: , Potato spindle tuber viroid (PSTVd) is the type species of the genus Posipiviroid, family Pospiviroidae. An absence of hammerhead ribozymes and the presence of a ,central conserved region' distinguish PSTVd and related viroids from members of a second viroid family, the Avsunviroidae. Physical properties: , Viroids are small, unencapsidated, circular, single-stranded RNA molecules which replicate autonomously when inoculated into host plants. Because viroids are non-protein-coding RNAs, designation of the more abundant, highly infectious polarity strand as the positive strand is arbitrary. PSTVd assumes a rod-like, highly structured conformation that is resistant to nuclease degradation in vitro. Naturally occurring sequence variants of PSTVd range in size from 356 to 361 nt. Hosts and symptoms: , The natural host range of PSTVd,cultivated potato, certain other Solanum spp., and avocado,appears to be quite limited. Foliar symptoms in potato are often obscure, and the severity of tuber symptoms (elongation with the appearance of prominent bud scales/eyebrows and growth cracks) depends on both temperature and length of infection. PSTVd has a broad experimental host range, especially among solanaceous species, and strains are classified as mild, intermediate or severe based upon the symptoms observed in sensitive tomato cultivars. These symptoms include shortening of internodes, petioles and mid-ribs, severe epinasty and wrinkling of the leaves, and necrosis of mid-ribs, petioles and stems. [source] LIM kinase-2 targeting as a possible anti-metastasis therapyTHE JOURNAL OF GENE MEDICINE, Issue 3 2004Eigo Suyama Abstract Background Metastatic properties of tumors involve movement of cancerous cells from one place to another and tissue invasion. Metastatic cells have altered cell adhesion and movement that can be examined by in vitro chemotaxis assays. The Rho/ROCK/LIM kinase pathway is one of the major signaling pathways involved in tumor metastasis. It is involved in the regulation of the actin cytoskeleton. Using the randomized ribozyme library, we initially found that metastatic human fibrosarcoma cells harboring ribozyme specific for ROCK lose their metastatic properties. In this study, we have determined the effect of ribozymes specific for LIM kinase-2 on metastatic and proliferative phenotypes of human fibrosarcoma cells. Methods We attempted to target LIM kinase-2 (LIMK-2) expression by hammerhead ribozymes (Rz) in human metastatic fibrosarcoma cells. An effective ribozyme was selected based on the expression analysis. Cells were stably transfected with Rz specifically effective for LIMK-2 and were examined for metastatic and proliferative properties. Results Analyses of cellular phenotypes such as cell proliferation, cell migration and colony-forming efficiency revealed that the suppression of LIMK-2 expression in human fibrosarcoma cells limits their migration and dense colony-forming efficiency without affecting cell proliferation rate or viability. Conclusions Specific targeting of metastatic and malignant properties of tumor cells by LIMK-2 ribozyme may serve as an effective therapy for invasive tumors with minimum effect on the surrounding normal cells. Copyright © 2004 John Wiley & Sons, Ltd. [source] |