Home About us Contact | |||
Hair Surface (hair + surface)
Selected AbstractsTime-of-flight secondary ion mass spectrometry analysis of the application of a cationic conditioner to ,clean' hairINTERNATIONAL JOURNAL OF COSMETIC SCIENCE, Issue 5 2004A. Harvey In this study the applicability of the surface-sensitive Time-of-flight secondary ion mass spectrometry (ToF-SIMS) technique to hair analysis and associated aqueous processing is evaluated. ToF-SIMS analysis of ,as received' human hair indicates the presence of silicones, anionic surfactants, and cationic conditioners, from previous treatments, on the fiber surface. Cleaning of the hair with SLS or SLES results in adsorption of the surfactants onto the fiber surface. In particular, the more non-polar surfactant components have greater substantivity for the fiber surface, as indicated by the relative increase in their ToF-SIMS intensity. Application of the Incroquat Behenyl 18-MEA conditioner to both ,virgin' and bleached hair results in the adsorption of the cationic C18, C20, C22, and C21 surfactant components onto the hair surface. The ToF-SIMS data indicate higher levels of conditioner on the bleached hair relative to the undamaged hair. [source] Microbeam synchrotron imaging of hairs from Ancient Egyptian mummiesJOURNAL OF SYNCHROTRON RADIATION, Issue 5 2003L. Bertrand Developments in microfocus synchrotron techniques have led to new results regarding the long-term alteration of archaeological samples of biological origin. Here, ancient hair samples from two Egyptian mummies have been analyzed using a conjunction of structural and elemental synchrotron methods. In this favored context of conservation, structural analysis revealed a remarkable preservation of keratin supramolecular organization at any observed length scale. Bulk keratin structure has therefore not been modified significantly over 2000 years. However, infrared spectroscopy indicated a partial disorganization of keratins close to the hair surface through polypeptide bond breakage. Elemental mapping showed a strongly heterogeneous distribution which can be related to mummification and cosmetic treatments. [source] CHANGES IN THE METAL CONTENT OF HUMAN HAIR DURING DIAGENESIS FROM 500 YEARS, EXPOSURE TO GLACIAL AND AQUEOUS ENVIRONMENTSARCHAEOMETRY, Issue 3 2010I. M. KEMPSON Scanning electron microscopy, inductively coupled plasma mass spectroscopy and time-of-flight secondary ion mass spectrometry have been used to examine the extent and possible mechanisms by which the metal content of human hair is altered by exposure to aqueous environments. The results, using both modern hair and samples from 500-year-old hair associated with glacier-entombed remains, show that the metal content has been altered sufficiently so that the interpretation of the metal signature in terms of diet or disease is problematic. While endogenous information is difficult to glean from these data, interesting observations have been made of possible early stages of mineral authigenic deposition. The chemistry of the outer hair surface was found to be consistent with deposition of Fe and Al silicates, as well as other mineral phases. The ancient hair was analysed at the root region and included a comparison of the internal versus external composition to assist in identifying the diagenetic processes. [source] Heterogeneous nucleation of three-dimensional protein nanocrystalsACTA CRYSTALLOGRAPHICA SECTION D, Issue 5 2007Dilyana G. Georgieva Nucleation is the rate-limiting step in protein crystallization. Introducing heterogeneous substrates may in some cases lower the energy barrier for nucleation and thereby facilitate crystal growth. To date, the mechanism of heterogeneous protein nucleation remains poorly understood. In this study, the nucleating properties of fragments of human hair in crystallization experiments have been investigated. The four proteins that were tested, lysozyme, glucose isomerase, a polysaccharide-specific Fab fragment and potato serine protease inhibitor, nucleated preferentially on the hair surface. Macrocrystals and showers of tiny crystals of a few hundred nanometres thickness were obtained also under conditions that did not produce crystals in the absence of the nucleating agent. Cryo-electron diffraction showed that the nanocrystals diffracted to at least 4,Å resolution. The mechanism of heterogeneous nucleation was studied using confocal fluorescent microscopy which demonstrated that the protein is concentrated on the nucleating surface. A substantial accumulation of protein was observed on the sharp edges of the hair's cuticles, explaining the strong nucleating activity of the surface. [source] |