Habitat Stability (habitat + stability)

Distribution by Scientific Domains


Selected Abstracts


Biodiversity and resource use of larval chironomids in relation to environmental factors in a large river

FRESHWATER BIOLOGY, Issue 6 2002
CHRISTIAN FESL
1.,Larval chironomids were examined at four sites on a cross-section of the River Danube in Austria between September 1995 and August 1996. The sites differed in hydraulics, sediment composition and habitat stability. 2.,Species,accumulation curves, showing the increase in number of species with increasing sampling effort, from three main channel sites were best described by a logarithmic model, suggesting that most of the species occurring at these sites were found. Data from a site connected to a backwater fitted best to a power model, indicating a random assemblage with additional species immigrating from the backwater area. 3.,Properties of the community were estimated using Jackknife techniques: species richness (range of mean values at the four sites: 32,91), H, diversity (1.5,2.3), evenness (0.23,0.28), spatial resource width (0.01,0.06), spatial resource overlap (0.13,0.20), spatial species aggregation (0.60,0.77), temporal community persistence (Kendal's correlation coefficient: 0.47,0.60) and beta-diversity (6.2,9.7). 4.,Redundancy analysis (RDA) was used to relate the community properties and species abundance to environmental factors. Habitat stability was the major factor associated with community structure. Higher sediment turnover led to higher spatial aggregation and, consequently, a decrease in spatial resource width and overlap, and to a decline in larval density and species richness. 5.,Species-abundance patterns agreed well with the log-normal model. Moderate community persistence and stability of the streambed sediments suggest that the log-normal model may be a good descriptor for communities of intermediately disturbed habitats, like large rivers, rather than stable habitats. [source]


Dispersal ability and host-plant characteristics influence spatial population structure of monophagous beetles

ECOLOGICAL ENTOMOLOGY, Issue 1 2005
Matthew J. St Pierre
Abstract., 1. Dispersal plays an integral role in determining spatial population structure and, consequently, the long-term survival of many species. Theoretical studies indicate that dispersal increases with population density and decreasing habitat stability. In the case of monophagous insect herbivores, the stability of host-plant populations may influence their spatial population structure. 2. The tallgrass prairie in Iowa, U.S.A. is highly fragmented and most prairie insects face a landscape with fewer habitat patches and smaller host-plant populations than 150 years ago, potentially making dispersal between patches difficult. Some herbivores, however, use native plant species with weedy characteristics that have increased in abundance because of disturbances. 3. Mark,recapture data and presence,absence surveys were used to examine dispersal and spatial population structure of two monophagous beetles with host plants that exhibit different population stability and have responded differently to fragmentation of tallgrass prairie. 4. Chrysochus auratus Fabricius exhibits a patchy population structure and has relatively large dispersal distances and frequencies. Its host plant is variable locally in time and space, but is more abundant than 150 years ago. The other species, Anomoea laticlavia Forster, exhibits a metapopulation or non-equilibrium population structure and has relatively small dispersal distances and frequencies. Its host-plant populations are stable in time and space. 5. The results indicate that dispersal ability of monophagous beetles reflects the life-history dynamics of their host plants, but the spatial population structure exhibited today is strongly influenced by how the host plants have responded to the fragmentation process over both time and space. [source]


Experimental evolution of dispersal in spatiotemporally variable microcosms

ECOLOGY LETTERS, Issue 10 2003
Nicholas A. Friedenberg
Abstract The world is an uncertain place. Individuals' fates vary from place to place and from time to time. Natural selection in unpredictable environments should favour individuals that hedge their bets by dispersing offspring. I confirm this basic prediction using Caenorhabditis elegans in experimental microcosms. My results agree with evolutionary models and correlations found previously between habitat stability and individual dispersal propensity in nature. However, I also find that environmental variation that triggers conditional dispersal behaviour may not impose selection on baseline dispersal rates. These findings imply that an increased rate of disturbance in natural systems has the potential to cause an evolutionary response in the life history of impacted organisms. [source]


Fire, flow and dynamic equilibrium in stream macroinvertebrate communities

FRESHWATER BIOLOGY, Issue 2 2010
ROBERT S. ARKLE
Summary 1. The complex effects of disturbances on ecological communities can be further complicated by subsequent perturbations within an ecosystem. We investigated how wildfire interacts with annual variations in peak streamflow to affect the stability of stream macroinvertebrate communities in a central Idaho wilderness, USA. We conducted a 4-year retrospective analysis of unburned (n = 7) and burned (n = 6) catchments, using changes in reflectance values (,NBR) from satellite imagery to quantify the percentage of each catchment's riparian and upland vegetation that burned at high and low severity. 2. For this wildland fire complex, increasing riparian burn severity and extent were associated with greater year-to-year variation, rather than a perennial increase, in sediment loads, organic debris, large woody debris (LWD) and undercut bank structure. Temporal changes in these variables were correlated with yearly peak flow in burned catchments but not in unburned reference catchments, indicating that an interaction between fire and flow can result in decreased habitat stability in burned catchments. 3. Streams in more severely burned catchments exhibited increasingly dynamic macroinvertebrate communities and did not show increased similarity to reference streams over time. Annual variability in macroinvertebrates was attributed, predominantly, to the changing influence of sediment, LWD, riparian cover and organic debris, as quantities of these habitat components fluctuated annually depending on burn severity and annual peak streamflows. 4. These analyses suggest that interactions among fire, flow and stream habitat may increase inter-annual habitat variability and macroinvertebrate community dynamics for a duration approaching the length of the historic fire return interval of the study area. [source]


Biodiversity and resource use of larval chironomids in relation to environmental factors in a large river

FRESHWATER BIOLOGY, Issue 6 2002
CHRISTIAN FESL
1.,Larval chironomids were examined at four sites on a cross-section of the River Danube in Austria between September 1995 and August 1996. The sites differed in hydraulics, sediment composition and habitat stability. 2.,Species,accumulation curves, showing the increase in number of species with increasing sampling effort, from three main channel sites were best described by a logarithmic model, suggesting that most of the species occurring at these sites were found. Data from a site connected to a backwater fitted best to a power model, indicating a random assemblage with additional species immigrating from the backwater area. 3.,Properties of the community were estimated using Jackknife techniques: species richness (range of mean values at the four sites: 32,91), H, diversity (1.5,2.3), evenness (0.23,0.28), spatial resource width (0.01,0.06), spatial resource overlap (0.13,0.20), spatial species aggregation (0.60,0.77), temporal community persistence (Kendal's correlation coefficient: 0.47,0.60) and beta-diversity (6.2,9.7). 4.,Redundancy analysis (RDA) was used to relate the community properties and species abundance to environmental factors. Habitat stability was the major factor associated with community structure. Higher sediment turnover led to higher spatial aggregation and, consequently, a decrease in spatial resource width and overlap, and to a decline in larval density and species richness. 5.,Species-abundance patterns agreed well with the log-normal model. Moderate community persistence and stability of the streambed sediments suggest that the log-normal model may be a good descriptor for communities of intermediately disturbed habitats, like large rivers, rather than stable habitats. [source]


Parallel habitat-driven differences in the phylogeographical structure of two independent lineages of Mediterranean saline water beetles

MOLECULAR ECOLOGY, Issue 18 2009
P. ABELLÁN
Abstract It has been hypothesized that species living in small lentic water bodies, because of the short-term geological persistence of their habitat, should show higher dispersal ability, with increased gene flow among populations and a less pronounced phylogeographical structure. Conversely, lotic species, living in more geologically stable habitats, should show reduced dispersal and an increased phylogeographical structure at the same geographical scales. In this work we tested the influence of habitat type in two groups of aquatic Coleoptera (Nebrioporus ceresyi and Ochthebius notabilis groups, families Dytiscidae and Hydraenidae respectively), each of them with closely related species typical of lotic and lentic saline Western Mediterranean water bodies. We used mitochondrial cox1 sequence data of 453 specimens of 77 populations through the range of nine species to compare a lotic vs. a lentic lineage in each of the two groups. Despite the differences in biology (predators vs. detritivorous) and evolutionary history, in both lotic lineages there was a higher proportion of nucleotide diversity among than within groups of populations, and a faster rate of accumulation of haplotype diversity (as measured by rarefaction curves) than in the lentic lineages. Similarly, lotic lineages had a higher absolute phylogenetic diversity, more remarkable considering their smaller absolute geographical ranges. By comparing closely related species, we were able to show the effect of contrasting habitat preferences in two different groups, in agreement with predictions derived from habitat stability. [source]


Social structure and facultative mating systems of hoary marmots (Marmota caligata)

MOLECULAR ECOLOGY, Issue 6 2007
C. J. KYLE
Abstract Mate-choice theory predicts different optimal mating systems depending on resource availability and habitat stability. Regions with limited resources are thought to promote monogamy. We tested predictions of monogamy in a social rodent, the hoary marmot (Marmota caligata), at the northern climatic extreme of its distribution. Mating systems, social structure and genetic relationships were investigated within and among neighbouring colonies of marmots within a 4 km2 valley near Kluane National Park, Yukon, Canada, using 21 microsatellite loci. While both monogamous and polygynous populations of hoary marmots have been observed in the southern reaches of this species' range; northern populations of this species are thought to be predominantly monogamous. Contrary to previous studies, we did not find northern hoary marmot social groups to be predominantly monogamous; rather, the mating system seemed to be facultative, varying between monogamy and polygyny within, as well as among, social groups. These findings reveal that the mating systems within colonies of this species are more flexible than previously thought, potentially reflecting local variation in resource availability. [source]


Environmental stability and the distribution of the sexes: insights from life history experiments with the geographic parthenogen Eucypris virens (Crustacea: Ostracoda)

OIKOS, Issue 6 2008
Maria Joăo Fernandes Martins
In many species with mixed reproduction, parthenogens cover a wider geographic range than sexuals. In freshwater ostracods this pattern referred to as geographic parthenogenesis is traditionally explained by ascribing a higher potential for dispersal to parthenogens. For example, the postglacial invasion hypothesis states that the lack of males in northern Europe is caused by the relatively slow range expansion of sexual lineages after deglaciation. An alternative explanation for the contemporary distribution of the sexes is based on spatial and temporal variations in ecological habitat stability. To test this hypothesis, we compared life history data of Eucypris virens individuals originating from bisexual and all-female populations. Populations with males are only found around the Mediterranean, whereas parthenogens cover most of Europe. The animals were hatched and grown in environments mimicking temperature and photoperiod conditions observed in Belgium and Spain. The data confirm the higher potential for population growth in parthenogens. In particular their faster hatching response, possibly higher fecundity (as derived from a difference in body height) and the absence of a cost of males should allow them to out-compete sexuals under stable conditions. However, the comparison of the hatchling accumulation curves of bisexual and all-female populations suggests that sexuals have an advantage in highly unpredictable environments. Indeed, under conditions mimicking those in southern Europe, bisexual populations exhibit a bet-hedging strategy, while parthenogenetic resting eggs hatch on average earlier and more synchronously. Overall, the life history data stress the importance of short term environmental fluctuations for the distribution of the sexes in E. virens, and probably many other inhabitants of ephemeral water bodies. [source]


Relationship of habitat stability and intra-specific population dynamics of an obligate corallivore butterflyfish

AQUATIC CONSERVATION: MARINE AND FRESHWATER ECOSYSTEMS, Issue S1 2005
Michael P. Crosby
Abstract 1.Intra-specific behavioural manifestations, as measured by territory size and conspecific agonistic encounters, population size and recruitment of the obligate corallivore butterflyfish Chaetodon multicinctus (Family: Chaetodontidae) were examined over a 5-year period at three Hawaiian coral reef sites, each receiving different levels of non-point-source terrigenous sediment runoff. 2.All three sites indicated significant correlations for percentage coral cover with territory size, fish size, and number of adult C. multicinctus, and for agonistic encounters with number of juvenile C. multicinctus. However, the site most impacted by sediment runoff indicated no significant correlations for percentage coral cover with territory size, fish length, number of adult C. multicinctus, number of agonistic encounters, or C. multicinctus juveniles; nor for number of agonistic encounters with number of juveniles. 3.The site moderately to minimally impacted by sediment runoff exhibited significant correlations for percentage coral cover with number of adults, while the site with no sedimentation impacts exhibited significant correlations for percentage coral cover with fish size, number of adults and number of juveniles. 4.Significant differences were found to exist between all three sites for agonistic encounters, territory size, fish size, number of C. multicinctus juveniles and percentage coral cover. The most highly impacted site exhibited a significantly higher number of adult C. multicinctus that were significantly smaller in size than either the minimally impacted and non-impacted sites. 5.The study design purposely selected high coral cover habitats (means ranged from 81.4% to 96.5%) at each site. Within this limited range of relatively high coral cover habitat, relative habitat stability resulting from a range of historic sediment inputs between sites appears to be the stronger forcing function for observed intra-specific behavioural manifestations, population size and recruitment than percentage coral cover. 6.Study results indicate that obligate corallivore butterflyfish behavioural manifestations, population size and recruitment may be used as a benchmark for changes in habitat stability for coral reef communities, and support the general premise of the butterflyfish indicator species hypothesis. Copyright © 2005 John Wiley & Sons, Ltd. [source]