Habitat Shifts (habitat + shift)

Distribution by Scientific Domains


Selected Abstracts


Habitat shifts of endangered species under altered climate conditions: importance of biotic interactions

GLOBAL CHANGE BIOLOGY, Issue 11 2008
KRISTINE L. PRESTON
Abstract Predicting changes in potential habitat for endangered species as a result of global warming requires considering more than future climate conditions; it is also necessary to evaluate biotic associations. Most distribution models predicting species responses to climate change include climate variables and occasionally topographic and edaphic parameters, rarely are biotic interactions included. Here, we incorporate biotic interactions into niche models to predict suitable habitat for species under altered climates. We constructed and evaluated niche models for an endangered butterfly and a threatened bird species, both are habitat specialists restricted to semiarid shrublands of southern California. To incorporate their dependency on shrubs, we first developed climate-based niche models for shrubland vegetation and individual shrub species. We also developed models for the butterfly's larval host plants. Outputs from these models were included in the environmental variable dataset used to create butterfly and bird niche models. For both animal species, abiotic,biotic models outperformed the climate-only model, with climate-only models over-predicting suitable habitat under current climate conditions. We used the climate-only and abiotic,biotic models to calculate amounts of suitable habitat under altered climates and to evaluate species' sensitivities to climate change. We varied temperature (+0.6, +1.7, and +2.8 °C) and precipitation (50%, 90%, 100%, 110%, and 150%) relative to current climate averages and within ranges predicted by global climate change models. Suitable habitat for each species was reduced at all levels of temperature increase. Both species were sensitive to precipitation changes, particularly increases. Under altered climates, including biotic variables reduced habitat by 68,100% relative to the climate-only model. To design reserve systems conserving sensitive species under global warming, it is important to consider biotic interactions, particularly for habitat specialists and species with strong dependencies on other species. [source]


Consequences of climatic change for water temperature and brown trout populations in Alpine rivers and streams

GLOBAL CHANGE BIOLOGY, Issue 1 2006
RENATA E. HARI
Abstract Twenty-five years of extensive water temperature data show regionally coherent warming to have occurred in Alpine rivers and streams at all altitudes, reflecting changes in regional air temperature. Much of this warming occurred abruptly in 1987/1988. For brown trout populations, the warming resulted in an upward shift in thermal habitat that was accelerated by an increase in the incidence of temperature-dependent Proliferative Kidney Disease at the habitat's lower boundary. Because physical barriers restrict longitudinal migration in mountain regions, an upward habitat shift in effect implies habitat reduction, suggesting the likelihood of an overall population decrease. Extensive brown trout catch data documenting an altitudinally dependent decline indicate that such a climate-related population decrease has in fact occurred. Our analysis employs a quantitatively defined reference optimum temperature range for brown trout, based on the sinusoidal regression of seasonally varying field data. [source]


Competition for food between Eurasian perch (Perca fluviatilis L.) and ruffe (Gymnocephalus cernuus [L.]) over different substrate types

ECOLOGY OF FRESHWATER FISH, Issue 4 2004
A. Dieterich
Abstract,,, Food consumption by Eurasian perch (Perca fluviatilis L.) and ruffe (Gymnocephalus cernuus [L.]) was studied in single and mixed-species treatments in the laboratory, where alternative food resources, chironomids and zooplankton, were offered simultaneously. The effects of structural complexity, which was represented by substrate grain size, and of feeding level on food consumption were analysed. Across all experiments, the outcome of competition between perch and ruffe depended on food abundance and on the structural complexity of the environment. Perch and ruffe both changed their food consumption in the presence of a heterospecific competitor. With high food supply, perch consumed more benthic food than ruffe. With low food supply, the consumption of perch decreased strongly, while that of ruffe remained high on fine sediment. Under all conditions tested, the mechanism of competition appeared to be of interference rather than of exploitative nature. It is suggested that with decreasing lake productivity caused by re-oligotrophication, habitat shifts of both species will occur, which will alleviate interspecific competition. Ruffe will forage over fine sediment and perch over coarse sediment, whereby both species will achieve the highest foraging efficiency under conditions of low food supply. Resumen 1. Hemos estudiado el consumo alimenticio de Perca fluviatilis L. y Gymnocephalus cernuus (L.) en condiciones de laboratorio. Bajo tratamientos de especies individuales y mezcladas, les ofrecimos, simultáneamente, varios recursos alimenticios alternativos (quironómidos y zooplancton). 2. Analizamos los efectos de la complejidad estructural - representada por el tamaño del sustrato (arena, grava, y guijo) - y del nivel alimenticio, sobre el consumo alimenticio. Pusimos especial atención a la potencial influencia de competidores hetero-específicos sobre los patrones alimenticios de ambas especies, tanto en términos cualitativos como cuantitativos. Además, dado que en un futuro cercano una menor productividad general en lagos debida a re-oligotrofia, probablemente aumente la competición por el alimento en muchos lagos donde ambas especies co-existen, los experimentos se llevaron a cabo bajo niveles de abastecimiento alimenticio alto y bajo. 3. En los experimentos, la aparición de competencia entre P. fluviatilis y G. cernuus dependió de la abundancia del alimento y de la complejidad estructural del ambiente. El consumo de quironómidos por P. fluviatilis dependió del tipo de sustrato a niveles altos de abastecimiento alimenticio pero no a niveles bajos, mientras que en G. cernuus observamos lo contrario. 4. Ambas especies cambiaron el consumo alimenticio en presencia de un competidor hetero-específico. A altos niveles de abastecimiento alimenticio, P. fluviatilis consumió más bentos que G. cernuus. A niveles bajos, el consumo de P. fluviatilis decreció substancialmente mientras que el de G. cernuus permaneció alto en sedimento fino. Bajo todas las condiciones experimentales analizadas, los mecanismos de competición parecieron ser de interferencia más que de naturaleza explotativa. 5. Finalmente, presentamos un escenario sobre como P. fluviatilis y G. cernuus pueden competir por alimento bentónico en lagos con variado sustrato de fondo. Sugerimos que a altos niveles de abastecimiento alimenticio, G. cernuus forrajee más sobre arena y grava mientras que P. fluviatilis puede utilizar todos los sustratos disponibles. Al decrecer el abastecimiento alimenticio por re-oligotrofia, pueden producirse cambios en el hábitat de ambas especies que minimizarán la competencia inter-específica. G. cernuus forrajeará básicamente sobre sedimento fino, allá donde sea claramente superior a P. fluviatilis. Esta última especie forrajeará predominantemente sobre sedimento más grueso donde se enfrentará a competencia intra- e inter-específica. A través de estos cambios de hábitat, ambas especies podrían alcanzar la mayor eficiencia de forrajeo bajo condiciones de bajo abastecimiento alimenticio. [source]


Atlantic salmon Salmo salar L., brown trout Salmo trutta L. and Arctic charr Salvelinus alpinus (L.): a review of aspects of their life histories

ECOLOGY OF FRESHWATER FISH, Issue 1 2003
A. Klemetsen
Abstract ,,,Among the species in the family Salmonidae, those represented by the genera Salmo, Salvelinus, and Oncorhynchus (subfamily Salmoninae) are the most studied. Here, various aspects of phenotypic and life-history variation of Atlantic salmon Salmo salar L., brown trout Salmo trutta L., and Arctic charr Salvelinus alpinus (L.) are reviewed. While many strategies and tactics are commonly used by these species, there are also differences in their ecology and population dynamics that result in a variety of interesting and diverse topics that are challenging for future research. Atlantic salmon display considerable phenotypic plasticity and variability in life-history characters ranging from fully freshwater resident forms, where females can mature at approximately 10 cm in length, to anadromous populations characterised by 3,5 sea-winter (5SW) salmon. Even within simple 1SW populations, 20 or more spawning life-history types can be identified. Juveniles in freshwater can use both fluvial and lacustrine habitats for rearing, and while most smolts migrate to sea during the spring, fall migrations occur in some populations. At sea, some salmon undertake extensive oceanic migrations while other populations stay within the geographical confines of areas such as the Baltic Sea. At the other extreme are those that reside in estuaries and return to freshwater to spawn after spending only a few months at sea. The review of information on the diversity of life-history forms is related to conservation aspects associated with Atlantic salmon populations and current trends in abundance and survival. Brown trout is indigenous to Europe, North Africa and western Asia, but was introduced into at least 24 countries outside Europe and now has a world-wide distribution. It exploits both fresh and salt waters for feeding and spawning (brackish), and populations are often partially migratory. One part of the population leaves and feeds elsewhere, while another part stays as residents. In large, complex systems, the species is polymorphic with different size morphs in the various parts of the habitat. Brown trout feed close to the surface and near shore, but large individuals may move far offshore. The species exhibits ontogenetic niche shifts partly related to size and partly to developmental rate. They switch when the amount of surplus energy available for growth becomes small with fast growers being younger and smaller fish than slow growers. Brown trout is an opportunistic carnivore, but individuals specialise at least temporarily on particular food items; insect larvae are important for the young in streams, while littoral epibenthos in lakes and fish are most important for large trout. The sexes differ in resource use and size. Females are more inclined than males to become migratory and feed in pelagic waters. Males exploit running water, near-shore and surface waters more than females. Therefore, females feed more on zooplankton and exhibit a more uniform phenotype than males. The Arctic charr is the northernmost freshwater fish on earth, with a circumpolar distribution in the Holarctic that matches the last glaciation. Recent mtDNA studies indicate that there are five phylogeographic lineages (Atlantic, Arctic, Bering, Siberian and Acadian) that may be of Pleistocene origin. Phenotypic expression and ecology are more variable in charr than in most fish. Weights at maturation range from 3 g to 12 kg. Population differences in morphology and coloration are large and can have some genetic basis. Charr live in streams, at sea and in all habitats of oligotrophic lakes, including very deep areas. Ontogenetic habitat shifts between lacustrine habitats are common. The charr feed on all major prey types of streams, lakes and near-shore marine habitats, but has high niche flexibility in competition. Cannibalism is expressed in several cases, and can be important for developing and maintaining bimodal size distributions. Anadromy is found in the northern part of its range and involves about 40, but sometimes more days in the sea. All charr overwinter in freshwater. Partial migration is common, but the degree of anadromy varies greatly among populations. The food at sea includes zooplankton and pelagic fish, but also epibenthos. Polymorphism and sympatric morphs are much studied. As a prominent fish of glaciated lakes, charr is an important species for studying ecological speciation by the combination of field studies and experiments, particularly in the fields of morphometric heterochrony and comparative behaviour. [source]


Trading safety for food: evidence from gut contents in roach and bleak captured at different distances offshore from their daytime littoral refuge

FRESHWATER BIOLOGY, Issue 5 2006
Z. MACIEJ GLIWICZ
Summary 1. Regular diel habitat shifts in roach were detected by hydro-acoustics in five moderately eutrophic, stratifying (maximum depth 24,27 m) and approximately circular lakes (of surface area 15, 75, 125, 300 and 900 ha and diameters 250, 600, 1000, 1700 and 2600 m) in north-eastern Poland in the years 1998,2000, when the lakes were free of smelt and other typical offshore planktivores, and their offshore areas were completely free of fish during the day. 2. The diel change in roach distribution was shown to assume a similar pattern in each lake: fish migrated from a daytime littoral refuge towards the centre of the lake at dusk, and returned to the littoral refuge at dawn. After sunset, fish gradually dispersed offshore until they covered the entire lake area in each of the three smaller lakes. In each of the two larger lakes, only small numbers of fish were seen in the central area at night, implying that the centre of the lake retained high food availability throughout the summer. 3. Inshore,offshore gradients in zooplankton prey density, body size, and numbers of eggs per clutch were weak or undetectable in the two smallest lakes, but strong and persistent in the three larger lakes, with Daphnia densities 5,30 times as high and body length 1.2,1.5 times as great in the central area as inshore. 4. The likely increase in the potential predation risk with distance from the littoral daytime refuge was found to be compensated by increased food gains in those fish which moved offshore at dusk to feed within a short time window, when light intensity was lower to make the risk reduced, but still high enough to see zooplankton prey. The benefit because of increased prey acquisition was greatest in the centre of the largest lake (at 1300 m from the shore), as revealed from gut inspections of roach and bleak trawl-sampled at different distances from the edge of the reed belt, and seen as a gradual, order-of-magnitude increase in the volume of food in the foregut, The food volume against distance-from-shore regression was highly significant on each of the four sampling dates in the largest lake, in spite of the wide variability of food volume in individual fish. [source]


Use and misuse of the IUCN Red List Criteria in projecting climate change impacts on biodiversity

GLOBAL CHANGE BIOLOGY, Issue 11 2006
H. RESIT AKÇAKAYA
Abstract Recent attempts at projecting climate change impacts on biodiversity have used the IUCN Red List Criteria to obtain estimates of extinction rates based on projected range shifts. In these studies, the Criteria are often misapplied, potentially introducing substantial bias and uncertainty. These misapplications include arbitrary changes to temporal and spatial scales; confusion of the spatial variables; and assume a linear relationship between abundance and range area. Using the IUCN Red List Criteria to identify which species are threatened by climate change presents special problems and uncertainties, especially for shorter-lived species. Responses of most species to future climate change are not understood well enough to estimate extinction risks based solely on climate change scenarios and projections of shifts and/or reductions in range areas. One way to further such understanding would be to analyze the interactions among habitat shifts, landscape structure and demography for a number of species, using a combination of models. Evaluating the patterns in the results might allow the development of guidelines for assigning species to threat categories, based on a combination of life history parameters, characteristics of the landscapes in which they live, and projected range changes. [source]


Colonization history, ecological shifts and diversification in the evolution of endemic Galápagos weevils

MOLECULAR ECOLOGY, Issue 4 2008
A. S. SEQUEIRA
Abstract Mitochondrial DNA sequence data were obtained for eight species of flightless Galapaganus endemic weevils and one winged close relative in order to study their colonization history and modes of diversification in the Galápagos Archipelago. Contrary to most other insular radiations, the phylogeny estimates we recovered for Galapaganus do not follow the progression rule of island biogeography. The penalized likelihood age estimates of colonization of the archipelago exceed the age of the emerged islands and underscore the potential role of now sunken seamounts for the early evolution of Galapaganus. The phylogeny proposes one intra-island origin for Galapaganus endemics, but monophyly tests suggest a larger contribution of in-situ speciation on older islands. Generalist habitat preferences were reconstructed as ancestral while shifts to highland habitats were reconstructed as having evolved independently on different islands. Magnitudes and patterns of diversification rate were found to differ between older and younger islands. Our analyses reveal that the colonization sequence of islands and timing of colonization of Galapaganus could be linked with the geological and volcanic history of the islands in a rather complex scenario. Even though most islands appear to have been colonized soon after their emergence, there are notable deviations from the pattern of sequential colonization expected under the progression rule when considering only the extant emerged islands. Patterns of diversification rate variation on older and younger islands correspond to the volcanic activity or remnants of such activity, while the pattern of independent evolution of restricted habitat preferences in different islands suggests that habitat shifts could also have contributed to species diversity in Galapaganus. [source]


Correlated evolution of stem and leaf hydraulic traits in Pereskia (Cactaceae)

NEW PHYTOLOGIST, Issue 3 2006
Erika J. Edwards
Summary ,,Recent studies have demonstrated significant correlations between stem and leaf hydraulic properties when comparing across species within ecological communities. This implies that these traits are co-evolving, but there have been few studies addressing plant water relations within an explicitly evolutionary framework. ,,This study tests for correlated evolution among a suite of plant water-use traits and environmental parameters in seven species of Pereskia (Cactaceae), using phylogenetically independent contrasts. ,,There were significant evolutionary correlations between leaf-specific xylem hydraulic conductivity, Huber Value, leaf stomatal pore index, leaf venation density and leaf size, but none of these traits appeared to be correlated with environmental water availability; only two water relations traits , mid-day leaf water potentials and photosynthetic water use efficiency , correlated with estimates of moisture regime. ,,In Pereskia, it appears that many stem and leaf hydraulic properties thought to be critical to whole-plant water use have not evolved in response to habitat shifts in water availability. This may be because of the extremely conservative stomatal behavior and particular rooting strategy demonstrated by all Pereskia species investigated. These results highlight the need for a lineage-based approach to understand the relative roles of functional traits in ecological adaptation. [source]


Evaluation of habitat sustainability and vulnerability for beech (Fagus crenata) forests under 110 hypothetical climatic change scenarios in Japan

APPLIED VEGETATION SCIENCE, Issue 3 2009
Tetsuya Matsui
Abstract Questions: Are there any sustainable or vulnerable habitats in which beech (Fagus crenata) forests could survive in Japan under 110 hypothetical climate change scenarios? Location: Six islands of Japan on which beech grows naturally. Methods: An ecological habitat model was used to simulate the potential habitat shifts of beech forests under 110 climate change scenarios. The amount of suitable habitat loss and gain was calculated with three migration options and risk surfaces. Vulnerable and sustainable habitats were identified to evaluate the potential risks and survival of beech forests. Results: The total areas of potential suitable habitats differed considerably depending on the future temperature and precipitation changes. Some areas on the Sea of Japan (SOJ) side showed higher probability of maintaining suitable habitats, whereas there were wider areas in which suitable habitats could not persist under any of the 110 climate change scenarios. Conclusions: The risk surfaces of the suitable habitats showed that decreases in precipitation along with increases in temperature reduced the total areas of suitable habitats. Increases in precipitation with increases in temperature of more than or equal to 2°C always reduce the areas of suitable habitats. Under increased precipitation with a temperature increase of <2°C, the areas of suitable habitats showed an increase, maintenance of the status quo or a decrease, depending on the size of the increase in precipitation. Beech forests in western Japan are predicted to be vulnerable to climate change, whereas some mountains on the SOJ side are predicted to be possible future refugia. [source]