Home About us Contact | |||
Habitat Partitioning (habitat + partitioning)
Selected AbstractsForaging behaviour and habitat partitioning of two sympatric cormorants in Patagonia, ArgentinaIBIS, Issue 3 2008ESTEBAN FRERE Radiotelemetry was used to assess the distribution and diving behaviour of Rock Shags Phalacrocorax magellanicus and Red-legged Cormorants Phalacrocorax gaimardi breeding in sympatry, and Rock Shags breeding in isolation. When breeding in sympatry there was little overlap in the foraging locations of the two species, with the highest densities of each species separated by 10 km. Red-legged Cormorants fed significantly closer to the breeding colony than did Rock Shags and undertook shorter foraging trips, making almost twice as many foraging trips per day as Rock Shags. Rock Shags breeding in isolation had a shorter foraging range than the birds breeding in sympatry with Red-legged Cormorants and foraging trip duration was significantly shorter. However, the number of feeding trips per day was similar between areas of sympatry and allopatry. Differences in the foraging ecology of Rock Shags in areas of sympatry and allopatry may be due to interspecific competition, which forces niche differentiation. The distance between foraging sites, the speed of movement of the prey, a species tendency to move into prey-depleted areas and the length of the breeding season (during which the birds are constrained to be in the same area) may play critical roles in determining the extent to which differential area use by competitors is a strategy that benefits both parties. [source] Movement trajectories and habitat partitioning of small mammals in logged and unlogged rain forests on BorneoJOURNAL OF ANIMAL ECOLOGY, Issue 5 2006KONSTANS WELLS Summary 1Non-volant animals in tropical rain forests differ in their ability to exploit the habitat above the forest floor and also in their response to habitat variability. It is predicted that specific movement trajectories are determined both by intrinsic factors such as ecological specialization, morphology and body size and by structural features of the surrounding habitat such as undergrowth and availability of supportive structures. 2We applied spool-and-line tracking in order to describe movement trajectories and habitat segregation of eight species of small mammals from an assemblage of Muridae, Tupaiidae and Sciuridae in the rain forest of Borneo where we followed a total of 13 525 m path. We also analysed specific changes in the movement patterns of the small mammals in relation to habitat stratification between logged and unlogged forests. Variables related to climbing activity of the tracked species as well as the supportive structures of the vegetation and undergrowth density were measured along their tracks. 3Movement patterns of the small mammals differed significantly between species. Most similarities were found in congeneric species that converged strongly in body size and morphology. All species were affected in their movement patterns by the altered forest structure in logged forests with most differences found in Leopoldamys sabanus. However, the large proportions of short step lengths found in all species for both forest types and similar path tortuosity suggest that the main movement strategies of the small mammals were not influenced by logging but comprised generally a response to the heterogeneous habitat as opposed to random movement strategies predicted for homogeneous environments. 4Overall shifts in microhabitat use showed no coherent trend among species. Multivariate (principal component) analysis revealed contrasting trends for convergent species, in particular for Maxomys rajah and M. surifer as well as for Tupaia longipes and T. tana, suggesting that each species was uniquely affected in its movement trajectories by a multiple set of environmental and intrinsic features. [source] Effects of experimental canopy gaps on mangrove recruitment: lack of habitat partitioning may explain stand dominanceJOURNAL OF ECOLOGY, Issue 2 2004Peter J. Clarke Summary 1Few species of Indo-pacific mangroves co-occur at spatial scales of canopy gaps despite environmental heterogeneity and a flora that has varied physiological and morphological traits, but experiments on why such communities are species poor are uncommon. 2Lack of habitat partitioning, in concert with competitive exclusion, may explain low species richness at canopy gap scales. This study examined whether mangrove recruitment differs among species with respect to the effect of forest gap size, ground disturbance, position along an intertidal gradient and canopy membership. 3The canopy of a tropical mangrove forest in northern Australia was experimentally manipulated to create two gap sizes (50 m2 and 225 m2) in low and high intertidal forests with or without sediment disturbance. Propagules of six species, from three mangrove families, were sown into treatments and their predation, establishment, growth and survival measured for 5 years. 4All species established, and five survived, in canopy gaps in both high and low intertidal positions. Interspecific difference in establishment, growth and survival of seedlings in two intertidal positions were not closely matched to canopy membership and hence this does not explain zonation. 5No seedlings survived under the canopy and there was little evidence for shade-tolerant species. The interactions between canopy treatments and sediment disturbance that would have indicated gap partitioning were not detected. Seedling growth and survival was enhanced in large canopy gaps but there were no growth differences among species that matched canopy membership of plots. 6Most species appear to be able to recruit in canopy gaps if there is no dispersal limitation. Rather, the range of species available to fill gaps is limited because predation of propagules advantages species that are from the adjacent canopy. Lack of partitioning of resources within gaps by species may result in the exclusion of competitors that are not canopy members, further reducing coexistence. [source] Spatial partitioning and asymmetric hybridization among sympatric coastal steelhead trout (Oncorhynchus mykiss irideus), coastal cutthroat trout (O. clarki clarki) and interspecific hybridsMOLECULAR ECOLOGY, Issue 9 2004CARL O. OSTBERG Abstract Hybridization between sympatric species provides unique opportunities to examine the contrast between mechanisms that promote hybridization and maintain species integrity. We surveyed hybridization between sympatric coastal steelhead (Oncorhynchus mykiss irideus) and coastal cutthroat trout (O. clarki clarki) from two streams in Washington State, Olsen Creek (256 individuals sampled) and Jansen Creek (431 individuals sampled), over a 3-year period. We applied 11 O. mykiss -specific nuclear markers, 11 O. c. clarki -specific nuclear markers and a mitochondrial DNA marker to assess spatial partitioning among species and hybrids and determine the directionality of hybridization. F1 and post-F1 hybrids, respectively, composed an average of 1.2% and 33.6% of the population sampled in Jansen Creek, and 5.9% and 30.4% of the population sampled in Olsen Creek. A modest level of habitat partitioning among species and hybrids was detected. Mitochondrial DNA analysis indicated that all F1 hybrids (15 from Olsen Creek and five from Jansen Creek) arose from matings between steelhead females and cutthroat males implicating a sneak spawning behaviour by cutthroat males. First-generation cutthroat backcrosses contained O. c. clarki mtDNA more often than expected suggesting natural selection against F1 hybrids. More hybrids were backcrossed toward cutthroat than steelhead and our results indicate recurrent hybridization within these creeks. Age analysis demonstrated that hybrids were between 1 and 4 years old. These results suggest that within sympatric salmonid hybrid zones, exogenous processes (environmentally dependent factors) help to maintain the distinction between parental types through reduced fitness of hybrids within parental environments while divergent natural selection promotes parental types through distinct adaptive advantages of parental phenotypes. [source] Allochronic speciation, secondary contact, and reproductive character displacement in periodical cicadas (Hemiptera: Magicicada spp.): genetic, morphological, and behavioural evidenceMOLECULAR ECOLOGY, Issue 3 2001John R. Cooley Abstract Periodical cicadas have proven useful in testing a variety of ecological and evolutionary hypotheses because of their unusual life history, extraordinary abundance, and wide geographical range. Periodical cicadas provide the best examples of synchronous periodicity and predator satiation in the animal kingdom, and are excellent illustrations of habitat partitioning (by the three morphologically distinct species groups), incipient species (the year classes or broods), and cryptic species (a newly discovered 13-year species, Magicicada neotredecim). They are particularly useful for exploring questions regarding speciation via temporal isolation, or allochronic speciation. Recently, data were presented that provided strong support for an instance of allochronic speciation by life-cycle switching. This speciation event resulted in the formation of a new 13-year species from a 17-year species and led to secondary contact between two formerly separated lineages, one represented by the new 13-year cicadas (and their 17-year ancestors), and the other represented by the pre-existing 13-year cicadas. Allozyme frequency data, mitochondrial DNA (mtDNA), and abdominal colour were shown to be correlated genetic markers supporting the life-cycle switching/allochronic speciation hypothesis. In addition, a striking pattern of reproductive character displacement in male call pitch and female pitch preference between the two 13-year species was discovered. In this paper we report a strong association between calling song pitch and mtDNA haplotype for 101 individuals from a single locality within the M. tredecim/M. neotredecim contact zone and a strong association between abdomen colour and mtDNA haplotype. We conclude by reviewing proposed mechanisms for allochronic speciation and reproductive character displacement. [source] Reproductive interference in two ground-hopper species: testing hypotheses of coexistence in the fieldOIKOS, Issue 9 2007Julia Gröning Similar to resource competition, reproductive interference may hamper the coexistence of closely related species. Species that utilize similar signal channels during mate finding may face substantial fitness costs when they come into contact and demographic displacement of the inferior species (sexual exclusion) is a likely outcome of such interactions. The two ground-hopper species Tetrix ceperoi and Tetrix subulata broadly overlap in their ranges and general habitat requirements, but rarely co-occur on a local scale. Results from laboratory and field experiments suggest that this mosaic pattern of sympatry might be influenced by reproductive interference. Here, we examine the significance of sexual interactions for these species in the field and test hypotheses on mechanisms of coexistence. Our results show that heterospecific sexual interactions also occur under field conditions, but in contrast to the experiments T. ceperoi was not the inferior species. The number of male mating attempts of both species was strongly correlated with encounter frequencies. Males discriminated between the sexes but not between the species, suggesting an incomplete mate recognition system in both species. The analysis of microhabitat preferences and spatial distribution revealed that habitat partitioning is not a suitable mechanism of coexistence in this system. Instead, the costs of reproductive interference are substantially mitigated by different niche breadths leading to different degrees of aggregation. Despite a considerable niche overlap T. ceperoi displayed a stronger preference for bare ground and occurred more aggregated than T. subulata, which had a broader niche. These differences may reduce the frequencies of heterospecific encounters and interactions in the field. Our results demonstrate that coexistence in the presence of reproductive interference is comparable to resource competition, being strongly influenced by ecological traits of the involved species, such as niche breadth and dispersion pattern. [source] Phylogeny, biogeography, and recurrent evolution of divergent bill types in the nectar-stealing flowerpiercers (Thraupini: Diglossa and Diglossopis)BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 1 2009WILLIAM M. MAUCK III Neotropical tanagers known as flowerpiercers (Diglossa and Diglossopis) have a novel feeding adaptation, comprising a downward curved hook on the maxilla that allows these species to obtain floral nectar without pollination. Using mitochondrial DNA sequences, the phylogenetic relationships of all 18 species of flowerpiercers were studied for the first time. Strong support was found for the monophyly of flowerpiercers and for the monophyly of four superspecies within flowerpiercers. However, previously described species-groups, as well as the genus Diglossopis, are not monophyletic. The biogeographic origin of flowerpiercers was identified as Andean, with a single dispersal event from the northern Andes to Central America and a single dispersal event from the northern Andes to the tepuis. The first principal component, representing a contrast between hook size and bill size, was mapped onto the phylogeny to examine the evolution of relative hook size in the group. Across the phylogeny, a relatively large hook and a relatively small hook evolved multiple times in unrelated lineages, indicating lability in bill morphology. Differences in hook size among sympatric species, together with habitat partitioning and behavioural differences, can explain the coexistence of multiple species of flowerpiercers at the same locality. © 2009 The Linnean Society of London, Biological Journal of the Linnean Society, 2009, 98, 14,28. [source] |