Home About us Contact | |||
Habitat Models (habitat + models)
Selected AbstractsHabitat models of bird species' distribution: an aid to the management of coastal grazing marshesJOURNAL OF APPLIED ECOLOGY, Issue 5 2000T. P. Milsom 1.,Coastal grazing marshes comprise an important habitat for wetland biota but are threatened by agricultural intensification and conversion to arable farmland. In Britain, the Environmentally Sensitive Area (ESA) scheme addresses these problems by providing financial incentives to farmers to retain their grazing marshes, and to follow conservation management prescriptions. 2.,A modelling approach was used to aid the development of management prescriptions for ground-nesting birds in the North Kent Marshes ESA. This ESA contains the largest area of coastal grazing marsh remaining in England and Wales (c. 6500 ha) and supports nationally important breeding populations of lapwing Vanellus vanellus and redshank Tringa totanus. 3.,Counts of ground-nesting birds, and assessments of sward structure, surface topography and wetness, landscape structure and sources of human disturbance were made in 1995 and again in 1996, on 19 land-holdings with a combined area of c. 3000 ha. The land-holdings varied from nature reserves at one extreme to an intensive dairy farm at the other. 4.,Models of relationship between the presence or absence of ground-nesting birds and the grazing marsh habitat in each of c. 430 marshes were constructed using a generalized linear mixed modelling (GLMM) method. This is an extension to the conventional logistic regression approach, in which a random term is used to model differences in the proportion of marshes occupied on different land-holdings. 5.,The combined species models predicted that the probability of marshes being occupied by at least one ground-nesting species increased concomitantly with the complexity of the grass sward and surface topography but decreased in the presence of hedgerows, roads and power lines. 6.,Models were also prepared for each of the 10 most widespread species, including lapwing and redshank. Their composition differed between species. Variables describing the sward were included in models for five species: heterogeneity of sward height tended to be more important than mean sward height. Surface topography and wetness were important for waders and wildfowl but not for other species. Effects of boundaries, proximity to roads and power lines were included in some models and were negative in all cases. 7.,Binomial GLMMs are useful for investigating habitat factors that affect the distribution of birds at two nested spatial scales, in this case fields (marshes) grouped within farms. Models of the type presented in this paper provide a framework for targeting of conservation management prescriptions for ground-nesting birds at the field scale on the North Kent Marshes ESA and on lowland wet grassland elsewhere in Europe. [source] Sediment preferences and size-specific distribution of young-of-the-year Pacific halibut in an Alaska nurseryJOURNAL OF FISH BIOLOGY, Issue 3 2002A. W. Stoner A combination of laboratory experiments and field surveys was used to test the hypotheses that responses to sediments change with fish size and that sediment grain-size is the predominant environmental factor affecting small-scale distribution in young-of-the-year (yoy) Pacific halibut Hippoglossus stenolepis. Laboratory tests showed that the smallest fish (31,40 mm LT) chose fine sediments (muddy and fine sands), fish 51,70 mm had high selectivity (primarily medium sand), and the largest fish (80,150 mm) were not selective although they avoided the largest grain-sizes (pebbles and granules). Sediment preferences were correlated with size-dependent burial capabilities. Beam trawl collections were made over a 6 year period in Kachemak Bay, Alaska, to examine the distribution of yoy Pacific halibut (14,120 mm LT) using small size classes (e.g. 10 mm intervals). Canonical correlation analysis showed that the per cent of sand in the sediment was a highly significant variable for all but one size and date combination. Catch per unit of effort (CPUE) for newly settled fish (<30 mm LT) was highest on very fine sand, fish 41,80 mm were most abundant on fine sand, and the largest yoy fish (81,120 mm) were abundant over a range of sediments from fine sand to mud. Except for the smallest fish, Pacific halibut in the field were associated with sediments somewhat finer than predicted from the laboratory experiments; however, virtually all were captured where they could bury easily. The ability of flatfish to bury and shelter in sediment is related to fish size; consequently, habitat associations shift rapidly during the first year of life. Habitat models for yoy flatfishes should consider size-dependent shifts in capabilities and preferences. [source] Fauna habitat modelling and mapping: A review and case study in the Lower Hunter Central Coast region of NSWAUSTRAL ECOLOGY, Issue 7 2005BRENDAN A. WINTLE Abstract Habitat models are now broadly used in conservation planning on public lands. If implemented correctly, habitat modelling is a transparent and repeatable technique for describing and mapping biodiversity values, and its application in peri-urban and agricultural landscape planning is likely to expand rapidly. Conservation planning in such landscapes must be robust to the scrutiny that arises when biodiversity constraints are placed on developers and private landholders. A standardized modelling and model evaluation method based on widely accepted techniques will improve the robustness of conservation plans. We review current habitat modelling and model evaluation methods and provide a habitat modelling case study in the New South Wales central coast region that we hope will serve as a methodological template for conservation planners. We make recommendations on modelling methods that are appropriate when presence-absence and presence-only survey data are available and provide methodological details and a website with data and training material for modellers. Our aim is to provide practical guidelines that preserve methodological rigour and result in defendable habitat models and maps. The case study was undertaken in a rapidly developing area with substantial biodiversity values under urbanization pressure. Habitat maps for seven priority fauna species were developed using logistic regression models of species-habitat relationships and a bootstrapping methodology was used to evaluate model predictions. The modelled species were the koala, tiger quoll, squirrel glider, yellow-bellied glider, masked owl, powerful owl and sooty owl. Models ranked sites adequately in terms of habitat suitability and provided predictions of sufficient reliability for the purpose of identifying preliminary conservation priority areas. However, they are subject to multiple uncertainties and should not be viewed as a completely accurate representation of the distribution of species habitat. We recommend the use of model prediction in an adaptive framework whereby models are iteratively updated and refined as new data become available. [source] Predicting species distribution: offering more than simple habitat modelsECOLOGY LETTERS, Issue 9 2005Antoine Guisan Abstract In the last two decades, interest in species distribution models (SDMs) of plants and animals has grown dramatically. Recent advances in SDMs allow us to potentially forecast anthropogenic effects on patterns of biodiversity at different spatial scales. However, some limitations still preclude the use of SDMs in many theoretical and practical applications. Here, we provide an overview of recent advances in this field, discuss the ecological principles and assumptions underpinning SDMs, and highlight critical limitations and decisions inherent in the construction and evaluation of SDMs. Particular emphasis is given to the use of SDMs for the assessment of climate change impacts and conservation management issues. We suggest new avenues for incorporating species migration, population dynamics, biotic interactions and community ecology into SDMs at multiple spatial scales. Addressing all these issues requires a better integration of SDMs with ecological theory. [source] Advances in river ice hydrology 1999,2003HYDROLOGICAL PROCESSES, Issue 1 2005Brian Morse Abstract In the period 1999 to 2003, river ice has continued to have important socio-economic impacts in Canada and other Nordic countries. Concurrently, there have been many important advances in all areas of Canadian research into river ice engineering and hydrology. For example: (1) River ice processes were highlighted in two special journal issues (Canadian Journal of Civil Engineering in 2003 and Hydrological Processes in 2002) and at five conferences (Canadian Committee on River Ice Processes and the Environment in 1999, 2001 and 2003, and International Association of Hydraulic Research in 2000 and 2002). (2) A number of workers have clearly advanced our understanding of river ice processes by bringing together disparate information in comprehensive review articles. (3) There have been significant advances in river ice modelling. For example, both one-dimensional (e.g. RIVICE, RIVJAM, ICEJAM, HEC-RAS, etc.) and two-dimensional (2-D; www.river2d.ca) public-domain ice-jam models are now available. Work is ongoing to improve RIVER2D, and a commercial 2-D ice-process model is being developed. (4) The 1999,2003 period is notable for the number of distinctly hydrological and ecological studies. On the quantitative side, many are making efforts to determine streamflow during the winter period. On the ecological side, some new publications have addressed the link to water quality (temperature, dissolved oxygen, nutrients and pollutants), and others have dealt with sediment transport and geomorphology (particularly as it relates to break-up), stream ecology (plants, food cycle, etc.) and fish habitat. There is the growing recognition, that these types of study require collaborative efforts. In our view, the main areas requiring further work are: (1) to interface geomorphological and habitat models with quantitative river ice hydrodynamic models; (2) to develop a manager's toolbox (database management, remote sensing, forecasting, intervention methodologies, etc.) to enable agencies to intervene better at the time of ice-jam-induced floods; and (3) finalize ice-jam prevention methods on the St Lawrence River to safeguard its $2 billion commercial navigation industry. Copyright © 2005 John Wiley & Sons, Ltd. [source] Non-parametric habitat models with automatic interactionsJOURNAL OF VEGETATION SCIENCE, Issue 6 2006Bruce McCune Abstract Questions: Can a statistical model be designed to represent more directly the nature of organismal response to multiple interacting factors? Can multiplicative kernel smoothers be used for this purpose? What advantages does this approach have over more traditional habitat modelling methods? Methods: Non-parametric multiplicative regression (NPMR) was developed from the premises that: the response variable has a minimum of zero and a physiologically-determined maximum, species respond simultaneously to multiple ecological factors, the response to any one factor is conditioned by the values of other factors, and that if any of the factors is intolerable then the response is zero. Key features of NPMR are interactive effects of predictors, no need to specify an overall model form in advance, and built-in controls on overfitting. The effectiveness of the method is demonstrated with simulated and real data sets. Results: Empirical and theoretical relationships of species response to multiple interacting predictors can be represented effectively by multiplicative kernel smoothers. NPMR allows us to abandon simplistic assumptions about overall model form, while embracing the ecological truism that habitat factors interact. [source] Habitat selection and habitat-specific survival of fledgling ovenbirds (Seiurus aurocapilla)JOURNAL OF ZOOLOGY, Issue 4 2006D. I. King Abstract Patterns of habitat use by some passerines change after the young leave the nest, and thus our understanding of habitat selection derived from counts of singing males earlier in the nesting cycle may not adequately represent the breeding habitat requirements of these species. Post-fledging changes in habitat use may have important conservation implications if the survival of fledglings is affected by characteristics of the habitat; however, there have been relatively few systematic studies of the post-fledging ecology of forest passerines and, of these, even fewer have incorporated analyses of the relationship between habitat characteristics and fledgling survival. We studied the post-fledging habitat selection and survival of ovenbirds Seiurus aurocapilla in northern New Hampshire, USA during two breeding seasons using radio telemetry. Habitat at sites used by radio-marked fledgling ovenbirds was characterized by fewer large trees and greater vertical structure 0,3 m above ground than ovenbird nest sites. Similarly, habitat at sites used by fledgling ovenbirds was characterized by fewer large trees and greater vertical structure than unused sites. Most (80%) of the 15 mortalities that we observed were due to predation. Nine (70%) of these occurred within the first 3 days of fledging, resulting in a significant drop in survival during this period. Fledgling survival increased significantly with increased vegetation structure. Our observations that fledgling ovenbirds are selective in their habitat use, that they select different habitat features than adult ovenbirds select for nesting and that fledgling survival is positively associated with these habitat features suggest that the use of habitat models based on counts of singing males before fledging does not adequately represent the habitat needs of this species. Conceivably, mortality during the post-fledging period could limit recruitment to levels insufficient to maintain the viability of ovenbird population even if adequate nesting habitat were available. [source] Few beetle species can be detected with 95% confidence using pitfall trapsAUSTRAL ECOLOGY, Issue 1 2010DON A. DRISCOLL Abstract False absences in wildlife surveys make it difficult to identify metapopulation processes, increase uncertainty of management decisions and bias parameter estimates in habitat models. Despite these risks, the number of species that can be detected with a certain probability in a community survey has rarely been examined. I sampled beetles over 5 months using pitfall trap grids at three rainforest locations in Tasmania, Australia. I compared detection probability for dispersed and clustered sampling schemes using a zero-inflated binomial model and a simpler occurrence method to calculate the probability of detection. After excluding extremely rare species, I analysed 12 of 121 species. Only three to six species could be detected with 95% probability using a sampling effort that is frequently applied in ecological studies. A majority of common species had a mid summer peak in detection probability meaning that survey effort could be reduced from 5 to 2 months with only a small reduction in data quality. Most species occurred at only a proportion of sample points within locations. Despite the implied spatial structuring, three small grids within a location detected 10 of 12 species as effectively as large, dispersed grids. This study warns that as little as 5% of the beetle fauna may have a 95% probability of detection using the frequently applied pitfall trap method, highlighting a substantial limitation in our ability to accurately map the distributions of ground invertebrates. Whether very large sample sizes can overcome this limitation remains to be examined. [source] Fauna habitat modelling and mapping: A review and case study in the Lower Hunter Central Coast region of NSWAUSTRAL ECOLOGY, Issue 7 2005BRENDAN A. WINTLE Abstract Habitat models are now broadly used in conservation planning on public lands. If implemented correctly, habitat modelling is a transparent and repeatable technique for describing and mapping biodiversity values, and its application in peri-urban and agricultural landscape planning is likely to expand rapidly. Conservation planning in such landscapes must be robust to the scrutiny that arises when biodiversity constraints are placed on developers and private landholders. A standardized modelling and model evaluation method based on widely accepted techniques will improve the robustness of conservation plans. We review current habitat modelling and model evaluation methods and provide a habitat modelling case study in the New South Wales central coast region that we hope will serve as a methodological template for conservation planners. We make recommendations on modelling methods that are appropriate when presence-absence and presence-only survey data are available and provide methodological details and a website with data and training material for modellers. Our aim is to provide practical guidelines that preserve methodological rigour and result in defendable habitat models and maps. The case study was undertaken in a rapidly developing area with substantial biodiversity values under urbanization pressure. Habitat maps for seven priority fauna species were developed using logistic regression models of species-habitat relationships and a bootstrapping methodology was used to evaluate model predictions. The modelled species were the koala, tiger quoll, squirrel glider, yellow-bellied glider, masked owl, powerful owl and sooty owl. Models ranked sites adequately in terms of habitat suitability and provided predictions of sufficient reliability for the purpose of identifying preliminary conservation priority areas. However, they are subject to multiple uncertainties and should not be viewed as a completely accurate representation of the distribution of species habitat. We recommend the use of model prediction in an adaptive framework whereby models are iteratively updated and refined as new data become available. [source] |