Home About us Contact | |||
Habitat Isolation (habitat + isolation)
Selected AbstractsThe roles and interactions of reproductive isolation mechanisms in fall armyworm (Lepidoptera: Noctuidae) host strainsECOLOGICAL ENTOMOLOGY, Issue 2010ASTRID T. GROOT 1. The moth Spodoptera frugiperda presents an interesting opportunity to study the evolution of reproductive isolation, because it consists of two host races that may be in the process of speciation. 2. The two races exhibit habitat isolation through host-plant preference, and two types of behavioural isolation, i.e. differences in sex pheromone composition and timing of mating activity at night. 3. In this paper, we review the selection pressures acting upon these three barriers as well as their genetic bases, to address the question of how divergence of the two strains may have evolved. 4. We also address possible interactions between the three barriers, whether and how they may have evolved in concert, and we view the evolution of these three prezygotic isolation barriers in the light of postzygotic isolation. [source] Landscape modification and habitat fragmentation: a synthesisGLOBAL ECOLOGY, Issue 3 2007Joern Fischer ABSTRACT Landscape modification and habitat fragmentation are key drivers of global species loss. Their effects may be understood by focusing on: (1) individual species and the processes threatening them, and (2) human-perceived landscape patterns and their correlation with species and assemblages. Individual species may decline as a result of interacting exogenous and endogenous threats, including habitat loss, habitat degradation, habitat isolation, changes in the biology, behaviour, and interactions of species, as well as additional, stochastic threats. Human-perceived landscape patterns that are frequently correlated with species assemblages include the amount and structure of native vegetation, the prevalence of anthropogenic edges, the degree of landscape connectivity, and the structure and heterogeneity of modified areas. Extinction cascades are particularly likely to occur in landscapes with low native vegetation cover, low landscape connectivity, degraded native vegetation and intensive land use in modified areas, especially if keystone species or entire functional groups of species are lost. This review (1) demonstrates that species-oriented and pattern-oriented approaches to understanding the ecology of modified landscapes are highly complementary, (2) clarifies the links between a wide range of interconnected themes, and (3) provides clear and consistent terminology. Tangible research and management priorities are outlined that are likely to benefit the conservation of native species in modified landscapes around the world. [source] Interactions between habitat quality and connectivity affect immigration but not abundance or population growth of the butterfly, Parnassius smintheusOIKOS, Issue 10 2009Stephen F. Matter Habitat geometry has been a primary focus in studies of spatially structured systems. Recent studies have indicated that a more comprehensive approach including habitat quality may be needed, however most previous studies have neglected potential interactions between quality and geometry. We investigated the effects of habitat quality for the butterfly Parnassius smintheus among a series of 17 sub-populations. Specifically, we examined how habitat connectivity and local nectar flower density affect dispersal, and local population abundance and growth. We first determined which flower species were potentially important by examining nectar flower electivity and then quantified nectar flower density in meadows over a five year period (2003,2007). These data along with meadow connectivity were compared to local population statistics derived from mark,recapture over the same time period. The number of immigrants to a meadow increased as meadow connectivity increased, but showed no direct relationship with nectar flower density; however, there was a significant interaction between meadow connectivity and nectar flower density such that meadows with high connectivity and a high density of nectar flowers received the greatest number of immigrants. The number of emigrants from a meadow increased with increasing habitat quality and connectivity, but showed no interactive effect. The abundance of butterflies increased with meadow connectivity, but showed no relationship with habitat quality or any interactive effect. Separate experiments showed that access to nectar flowers significantly increased female reproductive output, but not lifespan. Despite the effects on immigration and reproductive output, local population growth rates also showed no relationship to nectar flower density. Our results indicate that habitat quality can be important for immigration in spatially structured populations; however, effects of habitat quality may not necessarily translate into higher abundance or population growth. Additionally, habitat quality should not be considered independently from habitat isolation, particularly if it directly affects dispersal. Preserving or augmenting habitat quality will do little to bolster immigration or colonization without adequate connectivity. [source] Structures, dynamics and stability of reef fish assemblages in non-reefal coral communities in Hong Kong, ChinaAQUATIC CONSERVATION: MARINE AND FRESHWATER ECOSYSTEMS, Issue 3 2009Tze-Wai Tam Abstract 1.A detailed study on the spatial and temporal patterns of reef fish assemblages associated with non-reefal coral communities at A Ma Wan (AMW) and A Ye Wan (AYW) in Tung Ping Chau, Hong Kong, China, was carried out using an underwater visual census method from January 1998 to December 1999. 2.The study identified a total of 106 species (76 genera in 39 families) of fish in the study sites, in which 88 species were recorded in AMW and 78 species in AYW. Seasonal patterns in the abundance and species richness of all reef fishes and most of the frequently encountered families/trophic groups in both study sites were observed. Seasonal fluctuation of macroalgae, the influence of recruitment of larvae, and the possible seasonal variation in the behaviour of fish may all contribute to these observed seasonal patterns. 3.Multidimensional scaling (MDS) ordinations demonstrated that there were spatial variations in the fish community structures within and between sites. Such spatial patterns were possibly related to the spatial variation of the coral community structures in the study sites. The ordinations also showed that the fish community structures in the study sites were not seasonally stable. Such temporal instability of the fish community structures may be partly due to habitat isolation among the fish communities around the island. 4.These results imply that preservation and enhancement of habitat connectivity of the coral communities should be one of the main conservation strategies for the reef fish communities of Tung Ping Chau, and those of Hong Kong in general. This strategy may be equally applicable to other non-reefal coral communities elsewhere around the world. Copyright © 2008 John Wiley & Sons, Ltd. [source] |