Home About us Contact | |||
Habitat Distribution (habitat + distribution)
Selected AbstractsOne Hundred Fifty Years of Change in Forest Bird Breeding Habitat: Estimates of Species DistributionsCONSERVATION BIOLOGY, Issue 6 2005LISA A. SCHULTE aptitud del hábitat; ecología aviar; ecología de paisaje; planificación de conservación Abstract:,Evaluating bird population trends requires baseline data. In North America the earliest population data available are those from the late 1960s. Forest conditions in the northern Great Lake states (U.S.A.), however, have undergone succession since the region was originally cut over around the turn of the twentieth century, and it is expected that bird populations have undergone concomitant change. We propose pre-Euro-American settlement as an alternative baseline for assessing changes in bird populations. We evaluated the amount, quality, and distribution of breeding bird habitat during the mid-1800s and early 1990s for three forest birds: the Pine Warbler (Dendroica pinus), Blackburnian Warbler (D. fusca), and Black-throated Green Warbler (D. virens). We constructed models of bird and habitat relationships based on literature review and regional data sets of bird abundance and applied these models to widely available vegetation data. Original public-land survey records represented historical habitat conditions, and a combination of forest inventory and national land-cover data represented current conditions. We assessed model robustness by comparing current habitat distribution to actual breeding bird locations from the Wisconsin Breeding Bird Atlas. The model showed little change in the overall amount of Pine Warbler habitat, whereas both the Blackburnian Warber and the Black-throated Green Warbler have experienced substantial habitat losses. For the species we examined, habitat quality has degraded since presettlement and the spatial distribution of habitat shifted among ecoregions, with range expansion accompanying forest incursion into previously open habitats or the replacement of native forests with pine plantations. Sources of habitat loss and degradation include loss of conifers and loss of large trees. Using widely available data sources in a habitat suitability model framework, our method provides a long-term analysis of change in bird habitat and a presettlement baseline for assessing current conservation priority. Resumen:,La evaluación de tendencias de las poblaciones de aves requiere de datos de referencia. En Norte América, los primeros datos disponibles de poblaciones son del final de la década de 1960. Sin embargo, las condiciones de los bosques en los estados de los Grandes Lagos (E.U.A.) han experimentado sucesión desde que la región fue talada en los inicios del siglo veinte, y se espera que las poblaciones de aves hayan experimentado cambios concomitantes. Proponemos que se considere al período previo a la colonización euro americana como referencia alternativa para evaluar los cambios en las poblaciones de aves. Evaluamos la cantidad, calidad y distribución del hábitat para reproducción de tres especies de aves de bosque (Dendroica pinus, D. fusca y D. virens) a mediados del siglo XIX e inicios del XX. Construimos modelos de las relaciones entre las aves y el hábitat con base en la literatura y conjuntos de datos de abundancia de aves y los aplicamos a los datos de vegetación ampliamente disponibles. Los registros topográficos de tierras públicas originales representaron las condiciones históricas del hábitat, y una combinación de datos del inventario forestal y de cobertura de suelo representaron las condiciones actuales. Evaluamos la robustez del modelo mediante la comparación de la distribución de hábitat actual con sitios de reproducción de aves registrados en el Wisconsin Breeding Bird Atlas. El modelo mostró poco cambio en la cantidad total de hábitat de Dendroica pinus, mientras que tanto D. fusca como D. virens han experimentado pérdidas sustanciales de hábitat. Para las especies examinadas, la calidad del hábitat se ha degradado desde antes de la colonización y la distribución espacial del hábitat cambió entre ecoregiones, con la expansión del rango acompañando la incursión de bosques en hábitats anteriormente abiertos o el reemplazo de bosques nativos con plantaciones de pinos. Las fuentes de pérdida y degradación de hábitats incluyen la pérdida de coníferas y de árboles grandes. Mediante la utilización de fuentes de datos ampliamente disponibles en un modelo de aptitud de hábitat, nuestro método proporciona un análisis a largo plazo de los cambios en el hábitat de aves y una referencia precolonización para evaluar prioridades de conservación actuales. [source] Loop migration in adult marsh harriers Circus aeruginosus, as revealed by satellite telemetryJOURNAL OF AVIAN BIOLOGY, Issue 2 2010Raymond H. G. Klaassen Loop migration among birds is characterized by the spring route lying consistently west or east of the autumn route. The existence of loops has been explained by general wind conditions or seasonal differences in habitat distribution. Loop migration has predominantly been studied at the population level, for example by analysing ring recoveries. Here we study loop migration of individual marsh harriers Circus aeruginosus tracked by satellite telemetry. We show that despite a generally narrow migration corridor the harriers travelled in a distinct clockwise loop through Africa and southern Europe, following more westerly routes in spring than in autumn. We used the Normalized Difference Vegetation Index (NDVI) to identify potential feeding habitat in Africa. Suitable habitat seemed always more abundant along the western route, both in spring and autumn, and no important stopover site was found along the eastern route. Observed routes did thus not coincide with seasonal variation in habitat availability. However, favourable habitat might be more important during spring migration, when the crossing of the Sahara seems more challenging, and thus habitat availability might play an indirect role in the harriers' route choice. Grid-based wind data were used to reconstruct general wind patterns, and in qualitative agreement with the observed loop marsh harriers predominantly encountered westerly winds in Europe and easterly winds in Africa, both in autumn and in spring. By correlating tail- and crosswinds with forward and perpendicular movement rates, respectively, we show that marsh harriers are partially drifted by wind. Thus, we tentatively conclude that wind rather than habitat seems to have an overriding effect on the shape of the migration routes of marsh harriers. General wind conditions seem to play an important role also in the evolution of narrow migratory loops as demonstrated for individual marsh harriers. [source] Eastern Beringian biogeography: historical and spatial genetic structure of singing voles in AlaskaJOURNAL OF BIOGEOGRAPHY, Issue 8 2010Marcelo Weksler Abstract Aim Pleistocene climatic cycles have left marked signatures in the spatial and historical genetic structure of high-latitude organisms. We examine the mitochondrial (cytochrome b) genetic structure of the singing vole, Microtus miurus (Rodentia: Cricetidae: Arvicolinae), a member of the Pleistocene Beringian fauna, and of the insular vole, Microtus abbreviatus, its putative sister species found only on the St Matthew Archipelago. We reconstruct the phylogenetic and phylogeographical structure of these taxa, characterize their geographical partitioning and date coalescent and cladogenetic events in these species. Finally, we compare the recovered results with the phylogenetic, coalescent and spatial genetic patterns of other eastern Beringian mammals and high-latitude arvicoline rodents. Location Continental Alaska (alpine and arctic tundra) and the St Matthew Archipelago (Bering Sea). Methods We generated and analysed cytochrome b sequences of 97 singing and insular voles (M. miurus and M. abbreviatus) from Alaska. Deep evolutionary structure was inferred by phylogenetic analysis using parsimony, maximum likelihood and Bayesian approaches; the geographical structure of genetic diversity was assessed using analysis of molecular variance and network analysis; ages of cladogenetic and coalescent events were estimated using a relaxed molecular clock model with Bayesian approximation. Results Regional nucleotide diversity in singing voles is higher than in other high-latitude arvicoline species, but intra-population diversity is within the observed range of values for arvicolines. Microtus abbreviatus specimens are phylogenetically nested within M. miurus. Molecular divergence date estimates indicate that current genetic diversity was formed in the last glacial (Wisconsinan) and previous interglacial (Sangamonian) periods, with the exception of a Middle Pleistocene split found between samples collected in the Wrangell Mountains region and all other singing vole samples. Main conclusions High levels of phylogenetic and spatial structure are observed among analysed populations. This pattern is consistent with that expected for a taxon with a long history in Beringia. The spatial genetic structure of continental singing voles differs in its northern and southern ranges, possibly reflecting differences in habitat distribution between arctic and alpine tundra. Our phylogenetic results support the taxonomic inclusion of M. miurus in its senior synonym, M. abbreviatus. [source] Predicting habitat distribution and frequency from plant species co-occurrence dataJOURNAL OF BIOGEOGRAPHY, Issue 6 2007Christine Römermann Abstract Aim, Species frequency data have been widely used in nature conservation to aid management decisions. To determine species frequencies, information on habitat occurrence is important: a species with a low frequency is not necessarily rare if it occupies all suitable habitats. Often, information on habitat distribution is available for small geographic areas only. We aim to predict grid-based habitat occurrence from grid-based plant species distribution data in a meso-scale analysis. Location, The study was carried out over two spatial extents: Germany and Bavaria. Methods, Two simple models were set up to examine the number of characteristic plant species needed per grid cell to predict the occurrence of four selected habitats (species data from FlorKart, http://www.floraweb.de). Both models were calibrated in Bavaria using available information on habitat distribution, validated for other federal states, and applied to Germany. First, a spatially explicit regression model (generalized linear model (GLM) with assumed binomial error distribution of response variable) was obtained. Second, a spatially independent optimization model was derived that estimated species numbers without using spatial information on habitat distribution. Finally, an additional uncalibrated model was derived that calculated the frequencies of 24 habitats. It was validated using NATURA2000 habitat maps. Results, Using the Bavarian models it was possible to predict habitat distribution and frequency from the co-occurrence of habitat-specific species per grid cell. As the model validations for other German federal states were successful, the models were applied to all of Germany, and habitat distribution and frequencies could be retrieved for the national scale on the basis of habitat-specific species co-occurrences per grid cell. Using the third, uncalibrated model, which includes species distribution data only, it was possible to predict the frequencies of 24 habitats based on the co-occurrence of 24% of formation-specific species per grid cell. Predicted habitat frequencies deduced from this third model were strongly related to frequencies of NATURA2000 habitat maps. Main conclusions, It was concluded that it is possible to deduce habitat distributions and frequencies from the co-occurrence of habitat-specific species. For areas partly covered by habitat mappings, calibrated models can be developed and extrapolated to larger areas. If information on habitat distribution is completely lacking, uncalibrated models can still be applied, providing coarse information on habitat frequencies. Predicted habitat distributions and frequencies can be used as a tool in nature conservation, for example as correction factors for species frequencies, as long as the species of interest is not included in the model set-up. [source] Effects of climate and local aridity on the latitudinal and habitat distribution of Arvicanthis niloticus and Arvicanthis ansorgei (Rodentia, Murinae) in MaliJOURNAL OF BIOGEOGRAPHY, Issue 1 2004B. Sicard Abstract Introduction, The genus Arvicanthis (Lesson 1842) (Rodentia: Murinae), usually referred to as the unstriped grass rat, is mainly distributed in savanna and grassland habitats of Sub-Saharan Africa. Among the four chromosomal forms of Arvicanthis recently differentiated in Western and Central Africa, the one with a diploid chromosomal number (2n) of 62 and an autosomal fundamental number (NFa) of 62 or 64 is ascribed to Arvicanthis niloticus (Demarest 1822), while the one with 2n = 62 and a NFa between 74 and 76 is referred to A. ansorgei (Thomas 1910). Despite the broad area of sympatry recently uncovered along the inner delta of the Niger river in Mali [details in Volobouev et al. (2002) Cytogenetics and Genome Research, 96, 250,260], the distribution of the two species is largely parapatric and follows the latitudinal patterns of the West-African biogeographical domains, which are related to the latitudinal patterns of annual rainfall in this region. Here, we analyse the suggestion that the two species show specific adaptations to differences in climate aridity. Methods, Karyologically screened animals were sampled in 19 localities in seasonally flooded regions located along the ,Niger' river in Mali and extending from 1100 to 200 mm of mean annual rainfall. The analysis of trapping success (TS) data allowed us to investigate the respective effects of climate (i.e. annual rainfall) and local (i.e. duration of the green herbaceous vegetation) aridity on the latitudinal and habitat distribution of the two species. Conclusions, The broad zone of sympatry was found to correspond to a northward expansion of the recognized distribution area of A. ansorgei. TS values indicated that the two species responded very differently to climatic and local conditions of aridity. Arvicanthis ansorgei decreased in TS as regional conditions became more arid; a similar trend was also observed within regions where habitat occupancy decreased with local aridity. The higher TS observed in the most humid habitat relative to the others persisted throughout the latitudinal rainfall gradient. In contrast, TS of A. niloticus increased with latitudinal aridity. This species was present in more arid habitats than A. ansorgei from 1000 mm down to 400 mm of mean annual rainfall where a shift to the most humid habitat occurred. These opposite trends in TS distribution between species suggest that A. ansorgei is less adapted than A. niloticus to arid environments at both a regional and habitat level; thus, A. ansorgei would be able to invade dry regions only along the extensive floodplains bordering the inner delta of the ,Niger' river. Several biological traits that may be involved in limiting the southward distribution of A. niloticus are discussed. [source] THE TYCHOPELAGIC DIATOM, PARALIA SULCATA, AS PALEOINDICATOR SPECIES IN COASTAL MARINE ENVIRONMENTSJOURNAL OF PHYCOLOGY, Issue 2000M.R. McQuoid Paralia sulcata is a diatom commonly found in both the plankton and benthos of coastal environments. This species is heavily silicified and, thus preserves well in sedimentary records making it a potentially useful paleoindicator species. However, its tychopelagic nature and its association with a wide range of environmental conditions have made detailed paleoecological interpretations complicated. High-resolution sediment records from coastal fjords in both Canada and Sweden show variations in the abundance and morphology of P. sulcata that provide evidence of changes in benthic habitat distribution and surface water properties in the fjords on timescales of decades to centuries. These studies suggest that P. sulcata can be an important paleoindicator species when interpretations are made in the context of its complex ecology. [source] Identification of a spatially efficient portfolio of priority conservation sites in marine and estuarine areas of FloridaAQUATIC CONSERVATION: MARINE AND FRESHWATER ECOSYSTEMS, Issue 4 2009Laura Geselbracht Abstract 1.A systematic conservation planning approach using benthic habitat and imperilled species data along with the site prioritization algorithm, MARXAN, was used to identify a spatially efficient portfolio of marine and estuarine sites around Florida with high biodiversity value. 2.Ensuring the persistence of an adequate geographic representation of conservation targets in a particular area is a key goal of conservation. In this context, development and testing of different approaches to spatially-explicit marine conservation planning remains an important priority. 3.This detailed case study serves as a test of existing approaches while also demonstrating some novel ways in which current methods can be tailored to fit the complexities of marine planning. 4.The paper reports on investigations of the influence of varying several algorithm inputs on resulting portfolio scenarios including the conservation targets (species observations, habitat distribution, etc.) included, conservation target goals, and socio-economic factors. 5.This study concluded that engaging stakeholders in the development of a site prioritization framework is a valuable strategy for identifying broadly accepted selection criteria; universal target representation approaches are more expedient to use as algorithm inputs, but may fall short in capturing the impact of historic exploitation patterns for some conservation targets; socio-economic factors are best considered subsequent to the identification of priority conservation sites when biodiversity value is the primary driver of site selection; and the influence of surrogate targets on portfolio selection should be thoroughly investigated to ensure unintended effects are avoided. 6.The priority sites identified in this analysis can be used to guide allocation of limited conservation and management resources. Copyright © 2008 John Wiley & Sons, Ltd. [source] Predicting habitat distribution and frequency from plant species co-occurrence dataJOURNAL OF BIOGEOGRAPHY, Issue 6 2007Christine Römermann Abstract Aim, Species frequency data have been widely used in nature conservation to aid management decisions. To determine species frequencies, information on habitat occurrence is important: a species with a low frequency is not necessarily rare if it occupies all suitable habitats. Often, information on habitat distribution is available for small geographic areas only. We aim to predict grid-based habitat occurrence from grid-based plant species distribution data in a meso-scale analysis. Location, The study was carried out over two spatial extents: Germany and Bavaria. Methods, Two simple models were set up to examine the number of characteristic plant species needed per grid cell to predict the occurrence of four selected habitats (species data from FlorKart, http://www.floraweb.de). Both models were calibrated in Bavaria using available information on habitat distribution, validated for other federal states, and applied to Germany. First, a spatially explicit regression model (generalized linear model (GLM) with assumed binomial error distribution of response variable) was obtained. Second, a spatially independent optimization model was derived that estimated species numbers without using spatial information on habitat distribution. Finally, an additional uncalibrated model was derived that calculated the frequencies of 24 habitats. It was validated using NATURA2000 habitat maps. Results, Using the Bavarian models it was possible to predict habitat distribution and frequency from the co-occurrence of habitat-specific species per grid cell. As the model validations for other German federal states were successful, the models were applied to all of Germany, and habitat distribution and frequencies could be retrieved for the national scale on the basis of habitat-specific species co-occurrences per grid cell. Using the third, uncalibrated model, which includes species distribution data only, it was possible to predict the frequencies of 24 habitats based on the co-occurrence of 24% of formation-specific species per grid cell. Predicted habitat frequencies deduced from this third model were strongly related to frequencies of NATURA2000 habitat maps. Main conclusions, It was concluded that it is possible to deduce habitat distributions and frequencies from the co-occurrence of habitat-specific species. For areas partly covered by habitat mappings, calibrated models can be developed and extrapolated to larger areas. If information on habitat distribution is completely lacking, uncalibrated models can still be applied, providing coarse information on habitat frequencies. Predicted habitat distributions and frequencies can be used as a tool in nature conservation, for example as correction factors for species frequencies, as long as the species of interest is not included in the model set-up. [source] Intimately linked or hardly speaking?MOLECULAR ECOLOGY, Issue 3 2001The relationship between genotype, environmental gradients in a Louisiana Iris hybrid population Abstract Several models of hybrid zone evolution predict the same spatial patterns of genotypic distribution whether or not structuring is due to environment-dependent or -independent selection. In this study, we tested for evidence of environment-dependent selection in an Iris fulva×Iris brevicaulis hybrid population by examining the distribution of genotypes in relation to environmental gradients. We selected 201 Louisiana Iris plants from within a known hybrid population (80 m × 80 m) and placed them in four different genotypic classes (I. fulva, I. fulva -like hybrid, I. brevicaulis -like hybrid and I. brevicaulis) based on seven species-specific random amplified polymorphic DNA (RAPD) markers and two chloroplast DNA haplotypes. Environmental variables were then measured. These variables included percentage cover by tree canopy, elevation from the high water mark, soil pH and percentage soil organic matter. Each variable was sampled for all 201 plants. Canonical discriminant analysis (CDA) was used to infer the environmental factors most strongly associated with the different genotypic groups. Slight differences in elevation (,0.5 m to +0.4 m) were important for distinguishing habitat distributions described by CDA, even though there were no statistical differences between mean elevations alone. I. brevicaulis occurred in a broad range of habitats, while I. fulva had a narrower distribution. Of all the possible combinations, I. fulva -like hybrids and I. brevicaulis -like hybrids occurred in the most distinct habitat types relative to one another. Each hybrid class was not significantly different from its closest parent with regard to habitat occupied, but was statistically unique from its more distant parental species. Within the hybrid genotypes, most, but not all, RAPD loci were individually correlated with environmental variables. This study suggests that, at a very fine spatial scale, environment-dependent selection contributed to the genetic structuring of this hybrid zone. [source] |