Home About us Contact | |||
Hwange National Park (hwange + national_park)
Selected AbstractsResource variability, aggregation and direct density dependence in an open context: the local regulation of an African elephant populationJOURNAL OF ANIMAL ECOLOGY, Issue 1 2008Simon Chamaillé-Jammes Summary 1An emerging perspective in the study of density dependence is the importance of the spatial and temporal heterogeneity of resources. Although this is well understood in temperate ungulates, few studies have been conducted in tropical environments where both food and water are limiting resources. 2We studied the regulation of one of the world's largest elephant populations in Hwange National Park, Zimbabwe. The study period started in 1986 when the population was released from culling. Using census data we investigated changes in elephant abundance with respect to rainfall and density across the entire park and across waterholes. 3The population more than doubled since culling stopped. The population increased continuously during the first 6 years, and then fluctuated widely at about 30 000 individuals. Immigration processes must have been involved in the increase of the population size. 4Population growth rates were negatively related to previous population density by a convex relationship, and negatively related to the ratio of previous population density on annual rainfall by a linear relationship. However, only this latter model (i.e. assuming a fluctuating carrying capacity related to annual rainfall) produced realistic dynamics. Overall, population decreased during dry years when the elephant density was high. 5During dry years there were fewer waterholes retaining water during the dry season and consequently elephant numbers at waterholes increased, while their aggregation level across waterholes decreased. On the long-run elephant numbers increased only at the less crowded waterholes. 6We suggest that the interaction between population size and the available foraging range determined by the number of active waterholes during the dry season controls the park population. 7Our results emphasize the need to understand how key-resource areas cause resource-based aggregation, which ultimately influences the strength of density dependence. More specifically, this study suggests that climate variability strongly affects local elephant population dynamics through changes in surface-water availability. Finally, as dispersal is likely to be an important driver of the dynamics of this population, our results support views that a metapopulation framework should be endorsed for elephant management in open contexts. [source] Managing heterogeneity in elephant distribution: interactions between elephant population density and surface-water availabilityJOURNAL OF APPLIED ECOLOGY, Issue 3 2007SIMON CHAMAILLÉ-JAMMES Summary 1Concerns over the ecological impacts of high African elephant Loxodonta africana densities suggest that it may be necessary to control their numbers locally, although the best management approach is still widely debated. Artificial water supply is believed to be a major cause of local overabundance, and could be used as a potential tool to regulate elephant distribution and impact across landscapes, but its effect on elephants at the population scale has never been studied. 2We assessed how dry-season surface-water availability constrained the distribution of an entire elephant population, using aerial and waterhole census data from Hwange National Park, Zimbabwe. The study was initiated in 1986, when the population was released from culling. We studied how artificial waterholes, holding water throughout the dry season, and vegetation production, estimated from a normalized difference vegetation index (NDVI), influenced the long-term distribution of elephant densities. We also investigated how the elephant distribution responded to changes in population density and annual rainfall, a driver of surface-water availability. 3Long-term dry-season elephant densities across the park tended to increase with vegetation production, and increased asymptotically with the density of artificial waterholes. 4Since the culling stopped, dry-season elephant densities have increased in most areas of the park, except in areas of low vegetation production and low water availability. Interannual fluctuations in elephant distribution are linked to rainfall variability through its effect on surface-water availability. During dry years elephants concentrated in areas where artificial pumping maintained surface-water availability during the dry season. 5During dry years elephant numbers at waterholes increased because of reduced surface-water availability, and elephants were distributed more evenly across waterholes, although active waterholes were unevenly distributed across the park. 6Synthesis and applications. Surface-water availability drives the distribution and abundance of elephants within Hwange National Park, and therefore appears to be at the heart of the trade-off between elephant conservation and the extent of their impact on ecosystems. Artificial manipulation of surface water is one of the tools available for the management of elephant populations and should not be overlooked when considering options for controlling elephant numbers in places where they are considered to be overabundant. [source] Seasonal density estimates of common large herbivores in Hwange National Park, ZimbabweAFRICAN JOURNAL OF ECOLOGY, Issue 4 2009Simon Chamaillé-Jammes First page of article [source] The role of water abundance, thermoregulation, perceived predation risk and interference competition in water access by African herbivoresAFRICAN JOURNAL OF ECOLOGY, Issue 3 2008Marion Valeix Abstract In African savannas, surface water can become limiting and an understanding of how animals address the trade-offs between different constraints to access this resource is needed. Here, we describe water access by ten African herbivore species in Hwange National Park, Zimbabwe, and we explore four possible determinants of the observed behaviours: water abundance, thermoregulation, perceived predation risk and interference competition. On average, herbivores were observed to drink in 80% of visits to a waterhole. The probability of drinking was higher in 2003 (474 mm) than in 2004 (770 mm), and at the end of the dry season than at its beginning. For larger species, this probability may also be related to risks of interference competition with elephants or other herbivores. For smaller species, this probability may also be related to the perceived risk of predation. We also investigate the time spent accessing water to drink. The influence of herd size and the presence of young on the time spent accessing water for most species suggests that perceived predation risk plays a role. Thermoregulation also affects this time: during the hottest periods, herbivores spend less time in open areas, unless when wind is strong, probably owing to evapotranspired heat loss. Résumé Dans les savanes africaines, l'eau de surface disponible peut devenir un facteur limitant et il est nécessaire de comprendre comment les animaux agissent face aux différentes contraintes que pose l'accès à cette ressource. Nous décrivons ici l'accès à l'eau de dix herbivores africains du Parc National de Hwange, au Zimbabwe, et nous explorons quatre facteurs qui sont peut-être déterminants dans les comportements observés: l'abondance de l'eau, la thermorégulation, le risque de prédation ressenti et la compétition/ interférence. En moyenne, on a observé que les herbivores buvaient lors de 80% de leurs visites au point d'eau. La probabilité qu'ils boivent étai plus forte en 2003 (474 mm) qu'en 2004 (770 mm), et à la fin de la saison sèche qu'au début. Pour les plus grandes espèces, cette probabilité pourrait aussi être liée aux risques de compétition par interférence avec les éléphants ou d'autres herbivores. Pour les plus petites espèces, cette probabilité pourrait aussi être liée au risque de prédation ressenti. Nous avons aussi étudié le temps passéà se rendre au point d'eau pour y boire. L'influence de la taille du groupe et de la présence de jeunes sur le temps pris par la plupart des espèces pour se rendre au point d'eau laisse penser que la perception du risque de prédation joue un rôle. La thermorégulation affecte aussi cette durée: pendant les périodes les plus chaudes, les herbivores passent moins de temps dans les espaces ouverts, sauf si le vent est fort, probablement à cause de la perte de chaleur par évapotranspiration. [source] Censusing and monitoring black rhino (Diceros bicornis) using an objective spoor (footprint) identification techniqueJOURNAL OF ZOOLOGY, Issue 1 2001Zoë C. Jewell Abstract An objective, non-invasive technique was developed for identifying individual black rhino from their footprints (spoor). Digital images were taken of left hind spoor from tracks (spoor pathways) of 15 known black rhino in Hwange National Park, Zimbabwe. Thirteen landmark points were manually placed on the spoor image and from them, using customized software, a total of 77 measurements (lengths and angles) were generated. These were subjected to discriminant and canonical analyses. Discriminant analysis of spoor measurements from all 15 known animals, employing the 30 measurements with the highest F -ratio values, gave very close agreement between assigned and predicted classification of spoor. For individual spoor, the accuracy of being assigned to the correct group varied from 87% to 95%. For individual tracks, the accuracy level was 88%. Canonical analyses were based on the centroid plot method, which does not require pre-assigned grouping of spoor or tracks. The first two canonical variables were used to generate a centroid plot with 95% confidence ellipses in the test space. The presence or absence of overlap between the ellipses of track pairs allowed the classification of the tracks. Using a new ,reference centroid value' technique, the level of accuracy was high (94%) when individual tracks were compared against whole sets (total number of spoor for each rhino) but low (35%) when tracks were compared against each other. Since tracks with fewer spoor were more likely to be misclassified, track sizes were then artificially increased by summing smaller tracks for the same rhino. The modified tracks in a pairwise comparison gave an accuracy of 93%. The advantages, limitations and practical applications of the spoor identification technique are discussed in relation to censusing and monitoring black rhino populations. [source] Climate-driven fluctuations in surface-water availability and the buffering role of artificial pumping in an African savanna: Potential implication for herbivore dynamicsAUSTRAL ECOLOGY, Issue 7 2007SIMON CHAMAILLÉ-JAMMES Abstract In arid and semiarid environments surface-water strongly constrains the distribution and abundance of large herbivores during the dry season. Surprisingly, we know very little about its variability in natural ecosystems. Here we used long-term data on the dry-season occurrence of water at individual waterholes to model the surface-water availability across Hwange National Park, Zimbabwe, under contrasted climatic and management scenarios. Without artificial pumping only 19.6% of the park occurred within 5 km of water under average climatic conditions. However surface-water availability was strongly influenced by annual rainfall, and over 20 years the variability of the surface area of the park occurring within 5 km of water was slightly larger than the variability of rainfall. This contrasts with the usual buffered response of vegetation production to rainfall fluctuations, and suggests that the variability in dry-season foraging range determined by surface-water availability could be the main mechanism regulating the population dynamics of large herbivores in this environment. Artificial pumping increased surface-water availability and reduced its variability over time. Because changes in surface-water availability could cause the greatest changes in forage availability for large herbivores, we urge ecologists to investigate and report on the variability of surface-water in natural ecosystems, particularly where rapid climate changes are expected. [source] |